Skip to main content
Log in

Cobalt-Based Ferrites Characterization Using Two Different Terahertz Time-Domain Spectrometers

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We report an experimental study of the electrical properties of manganese cobalt (MnCo) and nickel cobalt (NiCo) ferrites in the terahertz (THz) frequency band. The study is motivated by the potential of MnCo, NiCo, and other magnetic ceramics for the fabrication of active and passive devices for THz wave communications. Using two different terahertz (THz) time-domain spectroscopy systems, we characterized the optical constants of cobalt ferrites doped with manganese and nickel in the technologically important 0.2–1 THz frequency band. The MnCo and NiCo ferrites investigated in our study exhibit a lower refractive index and absorption coefficient in the 0.2–1 THz frequency band than commercial strontium ferrite. We observed that using different valency ion oxide leads to a sudden change of the refractive index as a function of sample stoichiometries. Our experimental results provide evidence that microwave ferrite technology can be extended to the THz frequency band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. A. Spaldin, Magnetic materials – fundamentals and applications (Cambridge University Press, New York, 2011).

    Google Scholar 

  2. A. Okamoto, IEEE Globecom Workshops 1, 1 (2009).

    Google Scholar 

  3. Y. He, P. He, V. G. Harris, and C. Vittoria, IEEE Trans. Magn. 42, 2852 (2006).

    Article  Google Scholar 

  4. J. A. Paulsen, A. P. Ring, C. C. H. Lo, J. E. Snyder, and D. C. Jiles, J. Appl. Phys. 97, 044502 (2005).

    Article  Google Scholar 

  5. M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, Nat. Commun. 4, 1558 (2013).

    Article  Google Scholar 

  6. S. Yu, C. Dhanasekhar, V. Adyam, S. Deckoff-Jones, M. K. L. Man, J. Madeo, E. L. Wong, T. Harada, B. M. K. Mariserla, K. M. Dani, and D. Talbayev, Phys. Rev. B 96, 094421 (2017).

    Article  Google Scholar 

  7. T. J. Huisman, R. V. Mikhaylovskiy, A. V. Telegin, Yu. P. Sukhorukov, A. B. Granovsky, S. V. Naumov, Th. Rasing, and A. V. Kimel, Appl. Phys. Lett. 106, 132411 (2015).

    Article  Google Scholar 

  8. M. Shalaby, F. Vidal, M. Peccianti, R. Morandotti, F. Enderli, T. Feurer, and B. D. Patterson, Phys. Rev. B 88, 140301 (2013).

    Article  Google Scholar 

  9. S. Baierl, J. H. Mentink, M. Hohenleutner, L. Braun, T.-M. Do, C. Lange, A. Sell, M. Fiebig, G. Woltersdorf, T. Kampfrath, and R. Huber, Phys. Rev. Lett. 117, 197201 (2016).

    Article  Google Scholar 

  10. K.-E. Peiponen, J. A. Zeitler, and M. Kuwata-Gonokami, Terahertz spectroscopy and imaging (Springer-Verlag, Berlin Heidelberg, 2013).

    Book  Google Scholar 

  11. B. Ferguson, and X.-C. Zhang, Nat. Mater. 1, 26 (2002).

    Article  Google Scholar 

  12. T. Notake, R. Endo, K. Fukunaga, I. Hosako, C. Otani, and H. Minamide, IEEE Trans. THz Sci. Technol. 4, 110 (2014).

    Article  Google Scholar 

  13. A. F. N. Boss, A. C. C. Migliano, and I. Wilke, MRS Adv. 1, 1 (2017).

    Google Scholar 

  14. A. F. N. Boss, A. C. C. Migliano, and I. Wilke, J. Aerosp. Technol. Manag. 9, 241 (2017).

    Article  Google Scholar 

  15. Laser Quantum, High-speed asynchronous sampling THz spectroscopy system user manual (Laser Quantum GmbH, 2015).

  16. V. L. O. Brito, Cerâmica 52, 221 (2006).

    Article  Google Scholar 

  17. B. H. Toby and R. B. Von Dreele, J. Appl. Crystallogr. 46, 544 (2013).

    Article  Google Scholar 

  18. A. Albinati and B. T. M. Willis, The Rietveld method (Springer, 2004).

  19. M. Naftaly and R. Dudley, Opt. Lett. 34, 1213 (2009).

    Article  Google Scholar 

  20. M. M. Hessien, M. M. Rashad, K. El-Barawy, and I. A. Ibrahim, J. Magn. Magn. Mater. 320, 1615 (2008).

    Article  Google Scholar 

  21. S. L. Dexheimer, Terahertz spectroscopy: principles and applications (CRC Press, Boca Raton, 2008).

    Google Scholar 

  22. W. Withayachumnankul, and M. Naftaly, J. Infrared Millim. Terahertz Waves 35, 610 (2014).

    Article  Google Scholar 

  23. G. H. Jonker, J. Phys. Chem. Solids 9, 165 (1959).

    Article  Google Scholar 

  24. L. G. Van Uitert, J. Chem. Phys. 24, 306 (1956).

    Article  Google Scholar 

Download references

Acknowledgments

A. F. N. B. would like to thank CAPES and CNPq–Science without Borders for the scholarships.

Funding

This project is supported by FAPESP (project 2012/01448-2), FINEP (CT-INFRA 2013), and CAPES (Pró-estratégia 050/2011) funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Fernando Ney Boss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boss, A.F.N., de Araújo Batista, H., de Melo Costa, A.C.F. et al. Cobalt-Based Ferrites Characterization Using Two Different Terahertz Time-Domain Spectrometers. J Infrared Milli Terahz Waves 39, 1127–1139 (2018). https://doi.org/10.1007/s10762-018-0526-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0526-y

Keywords

Navigation