Skip to main content
Log in

Frequency and Temperature Dependent Dielectric and Magnetic Properties of Manganese Doped Cobalt Ferrite Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper reports a series of investigations on the frequency and temperature dependent dielectric and magnetic properties of manganese doped cobalt ferrite nanoparticles. The investigated samples were prepared via solid state reaction using planetary ball milling. The nature in the variation of the relative dielectric constant of the investigated sample with Mn content (x) = 0.375 and 0.5 as a function of frequency demonstrates the normal behavior for the selected temperature at 77 K and 300 K. However, the relaxation single peaks are noted at 100 kHz for selected temperatures of 148 K, 165 K, and 236 K, which mark the ferrimagnetic-to-ferromagnetic phase transition. This transition may have originated from the dominance of anisotropy energy at a lower temperature. The values of relative dielectric constant for the samples are found to be higher than that at room temperature, which shows the relative dielectric constant to be strongly dependent on temperature. Their D-factor values are observed to be much lower in the low temperature region (below room temperature) and exhibit normal variation with an increase of frequency. The higher values of relative dielectric constant may make the samples suitable to be used in spaceborne applications. The enhanced saturation magnetization is observed due to calcination at elevated temperature (900°C). The effect of Mn content (x) is found to lessen the saturation magnetization due to the substitution of Fe3+ cation in the B site according to Neel’s two-sublattice model. The decreasing nature in the real part of permeability matches the spin-glass of the materials of the investigated system due to the tendency of their frozen spins in the lower temperature region. In addition, the decreasing trend in the Weiss constant with Mn content is also the signature of the spin-glass of the materials in the lower temperature region due to the decreased magnetic exchange interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bawawaje, M. Hashi, and I. Ismail, J. Magn. Magn. Mater. 323, 1433 (2011).

    Article  CAS  Google Scholar 

  2. R. Ahmad, H.I. Gul, M. Zarrar, H. Anwar, M.B. Khan, and A. Khan, J. Magn. Magn. Mater. 405, 28 (2016).

    Article  CAS  Google Scholar 

  3. Y.D. Kolekar, L. Sanchez, E.J. Rubio, and C.V. Ramana, Solid State Commun. 184, 34 (2014).

    Article  CAS  Google Scholar 

  4. N. Sivakumar, A. Narayanasamy, C.N. Chinnasamy, and B. Jeyadevan, J. Phys. Condens. (2007). https://doi.org/10.1088/0953-8984/19/38/386201.

    Article  Google Scholar 

  5. N. Ponpandian, P. Balaya, and A. Narayanasami, J. Phys. Condens 14, 3221 (2002).

    Article  CAS  Google Scholar 

  6. J.P. Singh, H. Kumar, A. Singhal, N. Sarin, R.C. Srivastava, and K.H. Chae, Appl. Sci. Lett. (2016). https://doi.org/10.17571/appslett.2016.02001.

    Article  Google Scholar 

  7. H. Kumar, R.C. Srivastava, J.P. Singh, P. Negi, H.M. Agrawal, D. Das, and K. HwaChae, J. Magn. Magn. Mater. 401, 16 (2016).

    Article  CAS  Google Scholar 

  8. M.Z. Ahsan and F.A. Khan, Mater SciNanotechnol. 2, 1 (2018).

    Google Scholar 

  9. M.Z. Ahsan, F.A. Khan, M.A. Islam, T. Tanzina, and M.K. Alam, J. Phys. Commun. 2, 105008 (2018).

    Article  Google Scholar 

  10. M.Z. Ahsan, F.A. Khan, and M.A. Islam, Results Phys. 14, 102484 (2019).

    Article  Google Scholar 

  11. M.Z. Ahsan and F.A. Khan, J. Phys. Sci. Appl. (2017). https://doi.org/10.17265/2159-5348/2017.06.005.

    Article  Google Scholar 

  12. M.N. Akhtar and M.A. Khan, J. Magn. Magn. Mater. 421, 260 (2017).

    Article  CAS  Google Scholar 

  13. S.P. Yadav, S.S. Shinde, A.A. Kadam, and K.Y. Rajpure, J. Semicond. (2013). https://doi.org/10.1088/1674-4926/34/9/093002.

    Article  Google Scholar 

  14. A.A. Khadem, S.S. Shinde, S.P. Yadv, P.S. Patil, and K.Y. Rajpur, J. Magn. Magn. Mater. 329, 59 (2013).

    Article  Google Scholar 

  15. G.H. Jonker, J PhysChem Solids. 9, 165 (1959).

    Article  CAS  Google Scholar 

  16. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, and I. Khan, Appl. Phys. 112, 084321 (2012).

    Article  Google Scholar 

  17. I.C. NlebedimY and C.Jiles Melikhov, J. Appl. Phys. 15, 043903 (2014).

    Article  Google Scholar 

  18. M.Z. Ahsan, F.A. Khan, and M.A. Islam, Int. J. Mat. Sci. Appl. (2018). https://doi.org/10.11648/j.ijmsa.20180706.11.

    Article  Google Scholar 

  19. A. Saini, P. Kumar, B. Ravelo, S. Lallechere, A. Thakur, and P. Thakur, Eng. Sci. Technol. 19, 911 (2016).

    Google Scholar 

  20. S. Tapdiya, Adv. Mat. Proc. 2, 547 (2017).

    Article  Google Scholar 

  21. Koferstein, J. Mater. Sci. 48, 6509 (2013).

    Article  Google Scholar 

  22. Rashed, J. Mater. Sci. 42, 5248 (2007).

    Article  Google Scholar 

  23. A. Hossain, M.S.I. Sarker, and M.K.R. Khan, Appl. Phys. A (2018). https://doi.org/10.1007/s00339-018-2042-2.

    Article  Google Scholar 

  24. S. Roy and J. Ghose, J. Appl. Phys. 87, 6226 (2000).

    Article  CAS  Google Scholar 

  25. Y. Melikhov, J.E. Snyder, D.C. Jiles, A.P. Ring, J.A. Paulsen, C.C.H. Lo, and K.W. Dennis, J. Appl. Phys. 99, 08R102 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the International Science Programme (ISP), Uppsala University, Sweden, for financial and technical support, and also to the department of physics, Bangladesh University of Engineering and Technology and the department of physics, Military Institute of Science and Technology for experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Ahsan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahsan, M.Z., Khan, F.A. & Islam, M.A. Frequency and Temperature Dependent Dielectric and Magnetic Properties of Manganese Doped Cobalt Ferrite Nanoparticles. J. Electron. Mater. 48, 7721–7729 (2019). https://doi.org/10.1007/s11664-019-07583-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07583-y

Keywords

Navigation