Skip to main content
Log in

Terahertz Frequency- and Mode-Insensitive Broadband Quasi-optical Converter Antenna System

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Recently emerged multimode gyrotron, a high-power broadband terahertz radiator, encounters the challenge of efficiently converting a series of operating whispering-gallery modes (WGMs) into free-space Gaussian beams. To this demand, we propose a frequency- and mode-insensitive antenna capable of broadband multimode converting. For a single mode, to achieve broadband operation, special reflector configuration and large-radius launcher guarantee the system high robustness to frequency-induced wave number variation. Furthermore, for a series of operating WGMs, in order to achieve multimode operation, high-order mode indices guarantees familiar field patterns and ray trajectories. In particular, high-purity Gaussian beams are simultaneously achieved in different WGMs of broad continuous bands, including 351–361 GHz for TE11,2 mode, 375–385 GHz for TE12,2 mode, and 398–410 GHz for TE13,2 mode. The results are verified by both the vector diffraction theory and the method of momentum. This kind of mode converter will promote the development of multimode gyrotrons and other antenna-feeder systems for high-power terahertz applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Thumm, History, presence and future of gyrotrons, in Vacuum Electronics Conference, 2009. IVEC'09. IEEE International, 2009, pp. 37–40: IEEE.

  2. Y. Hu and J. Feng, The development and new trends of microwave vacuum electronics devices, in Emerging Technologies (ICET), 2016 International Conference on, 2016, pp. 1–5: IEEE.

  3. G. S. Nusinovich, Introduction to the Physics of Gyrotrons. JHU Press, 2004.

  4. M. Y. Glyavin, G. G. e. Denisov, V. E. Zapevalov, M. A. Koshelev, M. Y. Tretyakov, and A. I. Tsvetkov, High power terahertz sources for spectroscopy and material diagnostics, Physics-Uspekhi, vol. 59, no. 6, p. 595, 2016.

    Article  Google Scholar 

  5. G. S. Nusinovich, M. K. Thumm, and M. I. Petelin, The gyrotron at 50: Historical overview, J. Infrared Millim. Terahertz Waves, vol. 35, no. 4, pp. 325–381, 2014.

    Article  Google Scholar 

  6. M. Thumm, High-power millimetre-wave mode converters in overmoded circular waveguides using periodic wall perturbations, Int. J. Electron., vol. 57, no. 6, pp. 1225–1246, 1984.

    Article  Google Scholar 

  7. J. Benford, J. A. Swegle, and E. Schamiloglu, High power microwaves. CRC press, 2007.

  8. A. C. Torrezan, S.-T. Han, I. Mastovsky, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, A. B. Barnes, and R. G. Griffin, Continuous-wave operation of a frequency-tunable 460-GHz second-harmonic gyrotron for enhanced nuclear magnetic resonance, IEEE Trans. Plasma Sci., vol. 38, no. 6, pp. 1150–1159, 2010.

    Article  Google Scholar 

  9. S. N. Vlasov, Transformation of a whispering gallery mode, propagating in a circular waveguide, into a beam of waves, Radio Eng. & Electron Phys., vol. 21, pp. 14–17, 1975.

    Google Scholar 

  10. G. Denisov, A. Kuftin, V. Malygin, N. P. Venediktov, D. Vinogradov, and V. Zapevalov, 110 GHz gyrotron with a built-in high-efficiency converter, Int. J. Electron., vol. 72, no. 5–6, pp. 1079–1091, 1992.

    Article  Google Scholar 

  11. T. Kobayashia, S. Moriyama, A. Isayama, M. Sawahata, M. Terakado, S. Hiranai, K. Wada, Y. Sato, J. Hinata, and K. Yokokura, Development of a dual frequency (110/138 GHz) gyrotron for JT-60SA and its extension to an oscillation at 82 GHz, in EPJ Web of Conferences, 2015, vol. 87, p. 04008: EDP Sciences.

  12. A. Samartsev, K. A. Avramidis, G. Gantenbein, G. Dammertz, M. Thumm, and J. Jelonnek, Efficient Frequency Step-Tunable Megawatt-Class $ D $-Band Gyrotron, IEEE Trans. Electron Devices, vol. 62, no. 7, pp. 2327–2332, 2015.

    Article  Google Scholar 

  13. K. Kreischer and R. Temkin, Single-mode operation of a high-power, step-tunable gyrotron, Phys. Rev. Lett., vol. 59, no. 5, p. 547, 1987.

    Article  Google Scholar 

  14. Y. Matsuki, K. Ueda, T. Idehara, R. Ikeda, K. Kosuga, I. Ogawa, S. Nakamura, M. Toda, T. Anai, and T. Fujiwara, Application of continuously frequency-tunable 0.4 THz gyrotron to dynamic nuclear polarization for 600 MHz solid-state NMR, J. Infrared Millim. Terahertz Waves, vol. 33, no. 7, pp. 745–755, 2012.

    Article  Google Scholar 

  15. A. C. Torrezan, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, and R. G. Griffin, Operation of a continuously frequency-tunable second-harmonic CW 330-GHz gyrotron for dynamic nuclear polarization, IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2777–2783, 2011.

    Article  Google Scholar 

  16. K. Chu, The electron cyclotron maser, Rev. Mod. Phys., vol. 76, no. 2, p. 489, 2004.

    Article  MathSciNet  Google Scholar 

  17. C.-H. Du, X.-B. Qi, L.-B. Kong, P.-K. Liu, Z.-D. Li, S.-X. Xu, Z.-H. Geng, and L. Xiao, Broadband tunable pre-bunched electron cyclotron maser for terahertz application, IEEE Trans. THz Sci. Technol., vol. 5, no. 2, pp. 236–243, 2015.

    Article  Google Scholar 

  18. X.-B. Qi, C.-H. Du, S. Pan, X. Ji, B. Huang, and P.-K. Liu, Terahertz broadband-tunable minigyrotron with a pulse magnet, IEEE Trans. Electron Devices, vol. 64, no. 2, pp. 527–535, 2017.

    Article  Google Scholar 

  19. O. Prinz, A. Arnold, G. Gantenbein, Y.-h. Liu, M. Thumm, and D. Wagner, Highly efficient quasi-optical mode converter for a multifrequency high-power gyrotron, IEEE Trans. Electron Devices, vol. 56, no. 5, pp. 828–834, 2009.

    Article  Google Scholar 

  20. X. Yang, O. Drumm, A. Arnold, E. Borie, G. Dammertz, K. Koppenburg, B. Piosczyk, D. Wagner, and M. Thumm, Design of a quasi-optical mode converter for a frequency step-tunable gyrotron, Int. J. Infrared Millim. Waves, vol. 24, no. 10, pp. 1599–1608, 2003.

    Article  Google Scholar 

  21. D. Liu, W. Wang, T. Song, Q. Zhuang, H. Shen, and S. Deng, A method to separate radiations from a dual-frequency operation gyrotron, IEEE Trans. Electron Devices, vol. 63, no. 5, pp. 2145–2148, 2016.

    Article  Google Scholar 

  22. X. Li, X. Liu, Y. Alfadhl, K. Ronald, W. He, A. Cross, and X. Chen, A dual-frequency quasi-optical output system for a THz gyro-multiplier, IEEE Trans. THz Sci. Technol., vol. 6, no. 5, pp. 674–681, 2016.

    Google Scholar 

  23. S. Pan, C.-H. Du, X.-B. Qi, and P.-K. Liu, Broadband terahertz-power extracting by using electron cyclotron maser, Sci. Rep., vol. 7, no. 1, p. 7265, 2017.

    Article  Google Scholar 

  24. A. Bogdashov and G. Denisov, Asymptotic theory of high-efficiency converters of higher-order waveguide modes into eigenwaves of open mirror lines, Radiophys. Quant. Electron., vol. 47, no. 4, pp. 283–296, 2004.

    Article  Google Scholar 

  25. M. Blank, High efficiency quasi-optical mode converters for overmoded gyrotrons, Massachusetts Institute of Technology, 1994.

  26. C.-H. Du, X.-B. Qi, and P.-K. Liu, Theoretical study of a broadband quasi-optical mode converter for pulse gyrotron devices, IEEE Trans. Plasma Sci., vol. 44, no. 10, pp. 2348–2355, 2016.

    Article  Google Scholar 

  27. S.-X. Xu, B. Wang, Z.-H. Geng, H. Wang, W. Gu, Y.-N. Su, and P.-K. Liu, Study of a quasi-optical mode converter for W-band gyrotron oscillator, IEEE Trans. Plasma Sci., vol. 39, no. 12, pp. 3345–3350, 2011.

    Article  Google Scholar 

  28. Z. H. Geng, Y. N. Su, P. K. Liu, S. X. Xu, W. Gu, G. F. Liu, C. H. Du, and H. Wang, Experiment and simulation of a W-band CW 30 kW low-voltage conventional gyrotron, IEEE Trans. Electron Devices, vol. 61, no. 6, pp. 1789–1794, 2014.

    Article  Google Scholar 

  29. J. Jin, Quasi-optical mode converter for a coaxial cavity gyrotron. Citeseer, 2007.

  30. O. Braz, G. Dammertz, M. Kuntze, and M. Thumm, D-band frequency step-tuning of a 1 MW gyrotron using a Brewster output window, Int. J. Infrared Millim. Waves, vol. 18, no. 8, pp. 1465–1477, 1997.

    Article  Google Scholar 

Download references

Funding

This work is sponsored by the National Natural Science Foundation of China under contracts 61522101, 61531002, and 61471007, and in part by the Beijing NOVA program (No. Z161100004916057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Hai Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, HQ., Du, CH., Pan, S. et al. Terahertz Frequency- and Mode-Insensitive Broadband Quasi-optical Converter Antenna System. J Infrared Milli Terahz Waves 39, 1065–1078 (2018). https://doi.org/10.1007/s10762-018-0523-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0523-1

Keywords

Navigation