Skip to main content
Log in

Proposal of Bow-Tie Antenna-Integrated Resonant Tunneling Diode Transmitter Utilizing Relaxation Oscillations and Its Application to Short-Distance Wireless Communications

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We propose a resonant tunneling diode (RTD)-based relaxation oscillator and an oscillator-based terahertz (THz) wireless link that compensate for shortfalls in RF-oscillator emission power by adding several relaxation carrier wave harmonic modes. We believe that the proposed link can perform as well as or superior to large component-based wireless links that suppress power dissipation using collimating lenses and/or discrete antennas to add the power output of a relaxation oscillator. This hypothesis is investigated analytically using a physics-based equivalent circuit model of the proposed oscillator and a link budget analysis of the relaxation carrier wave. The model, which incorporates effects such as the non-linearity of the tunneling diode and the electromagnetic properties of the integrated bow-tie antenna on the oscillator, is used to quantitatively investigate the link characteristics in terms of the signal-to-noise ratio (SNR) and other parameters and to demonstrate that, by applying an appropriate device size and number of harmonic modes in the occupied bandwidth, link performance comparable to that of previously reported wireless links can be achieved. Based on these results, we discuss the potential for practical implementation of the proposed link configuration in mobile link applications for use in environments such as the Internet of Things (IoT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Cisco, Global mobile data traffic forecast update, 2016-2021., https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf . Accessed 5 September 2017

  2. J. Mitola and G. Q. IEEE Pers. Commun., https://doi.org/10.1109/98.788210

  3. C. Wang, C. Lin, Q. Chen, X. Deng, and J. Zhang. Proc. 37th Int. Conf. Infrared, MIllim., THz waves, https://doi.org/10.1109/IRMMW-THz.2012.6380109

  4. J. Antes, F. Boes, T. Messinger, U.J. Lewark, T. Mahler, A. Tessmann, R. Henneberger, T. Zwick, and I. Kallfass. IEEE Trans. THz Sci. Technol., https://doi.org/10.1109/TTHZ.2015.2488486

  5. A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and Inada T. IEEE Trans. Microwave Theory Technol., https://doi.org/10.1109/TMTT.2009.2017256

  6. V. Dyadyuk, J.D. Bunton, J. Pathikulangara, R. Kendall, O. Sevimli, L. Stokes, and Abbott D.A. IEEE Trans. Microwave Theory Technol., https://doi.org/10.1109/TMTT.2007.909875

  7. C. Wang, B. Lu, C. Lin, Q. Chen, L. Miao, X. Deng, and J. Zhang. IEEE Trans. THz Sci. Technol., https://doi.org/10.1109/TTHZ.2013.2293119

  8. C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch, and T. Kleine-Ostmann. IEEE Elecron. Lett., https://doi.org/10.1049/el:20083359

  9. F. Boes, J. Antes, T. Messinger, D. Meier, R. Henneberger, A. Tessmann, and I. Kallfass. IEEE MTT-S Int. Microwave Symp., https://doi.org/10.1109/MWSYM.2015.7166930

  10. D. Lopez-Diaz, S. Koenig, A. Tessmann, F. Boes, J. Antes, I. Kallfass, F. Kurz, F. Poprawa, and R. Henneberger. 11th Euro. Radar Conf., https://doi.org/10.1109/EuRAD.2014.6991283

  11. I. Kallfass, A. Tessmann, J. Antes, D. Lopez-Diaz, M. Kuri, H. Massler, T. Zwick, and A. Leuther. IEEE MTT-S Int. Microwave Symp., https://doi.org/10.1109/MWSYM.2011.5972828

  12. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, and R. Palmer. Nature Photon., https://doi.org/10.1038/nphoton.2013.275

  13. H.J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and K. Kukutsu. IEEE Electron. Lett., https://doi.org/10.1049/el.2012.1708

  14. X. Yu, R. Asif, M. Piels, D. Zibar, M. Galili, T. Morioka, P.U. Jepsen, and L.K. Oxenlowe. IEEE Trans. THz Sci. Technol., https://doi.org/10.1109/TTHZ.2016.2599077

  15. G. Ducournau, F. Pavanello, A. Beck, L. Tohme, S. Blin, P. Nouvel, E. Peytavit, M. Zaknoune, P. Szriftgiser, and J.F. Lampin. IEEE Electron. Lett., https://doi.org/10.1049/el.2013.3796

  16. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi. Opt. Express, https://doi.org/10.1364/OE.21.023736

  17. G. Ducournau, K. Engenhardt, P. Szriftgiser, D. Bacquet, M. Zaknoune, R. Kassi, E. Lecomte, and J.F. Lampin. IEEE Electron. Lett., https://doi.org/10.1049/el.2015.0702

  18. A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K. Kitayama. IEICE Electron. Express, https://doi.org/10.1587/elex.8.612

  19. N. Oshima, K. Hashimoto, S. Suzuki, and M. Asada. IEEE Electron. Lett., https://doi.org/10.1049/el.2016.3120

  20. K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama, and S. Arai. IEEE Electron. Lett., https://doi.org/10.1049/el.2012.0849

  21. A. Kanno, P.T. Dat, I. Hosako, T. Kawanishi, and H. Ogawa. IEEE Global Commun. Conf., https://doi.org/10.1109/GLOCOM.2014.7037137

  22. M. Tonouchi. Nature Photon., https://doi.org/10.1038/nphoton.2007.3

  23. T. Nagatsuma. Proc. 20th Int. Conf. Appl Electromagnetics and Commun., 2010

  24. T. Schneider, A. Wiatrek, S. Preussler, M. Grigat, and R.P. Braun. IEEE Trans. THz Sci. Technol., https://doi.org/10.1109/TTHZ.2011.2182118

  25. T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada. 28th Int. Conf. Indium Phosph Relat. Mater., https://doi.org/10.1109/ICIPRM.2016.7528857

  26. Y. Mushiake. IEEE Antennas Propag. Mag., https://doi.org/10.1109/APS.2003.1220041

  27. K. Asakawa, Y. Itagaki, H. Shin-ya, M. Saito, and M. Suhara. IEICE Trans. Electron., https://doi.org/10.1587/transele.E95.C.1376

  28. N. Okumura, K. Asakawa, and M. Suhara. IEICE Trans. Electron., https://doi.org/10.1587/transele.E100.C.430

  29. H. Shin-ya, M. Suhara, N. Asaoka, and M. Naoi. IEICE Trans. Electron., https://doi.org/10.1587/transele.E93.C.1295

  30. H. Yamakura and M. Suhara. IEICE Trans. Electron., https://doi.org/10.1587/transele.E99.C.1312

  31. H. Yamakura and M. Suhara. IEICE Trans. Electron., https://doi.org/10.1587/transele.E100.C.632

  32. M. Suhara, Y. Kato, H. Yamakura, and K. Asakawa. AIUB J. Sci, Eng., 15(1) 1–4 (2016)

  33. H. Yamakura, Y. Ishiguro, Y. Kato, and M. Suhara. Proc. of 41th Int. Conf. Infrared, Millimeter, and Terahertz waves, https://doi.org/10.1109/IRMMW-THz.2016.7758647

  34. I. Bahl and P. Bhartia. Microwave solid state circuit design 2nd edn. (Wiley, New York, 2015), pp. 59

  35. D. Hofmann, G. Müller, and N. Streckfuß. Appl. Phys. A, https://doi.org/10.1007/BF00618891

  36. S.H. Kim, J.G. Fossum, and J.W. Yang. IEEE Trans. Electron Devices, https://doi.org/10.1109/TED.20006.880369

  37. J. Kennedy and R. Eberhart. Proc. of IEEE Inter. Conf. Neural Networks, https://doi.org/10.1109/ICNN.1995.488968

  38. H. Tomioka, M. Suhara, and T. Okumura. IEICE Trans. Electron., https://doi.org/10.1587/transele.E92.C.269

  39. M. Reddy, S.C. Martin, A.C. Molnar, R.E. Muller, R.P. Smith, P.H. Siegel, M.J. Mondry, M.J.W. Rodwell, H. Kroemer, and S.J. Allen. IEEE Electron Device Lett., https://doi.org/10.1109/55.568771

  40. A. Ludwig. IEEE Trans. Antenna and Propag., https://doi.org/10.1109/TAP.1971.1139909

  41. R.P. Meys. IEEE Ant. Propag. Mag., https://doi.org/10.1109/74.848947

  42. Y. Kawano, H. Matsumura, S. Shiba, M. Sato, T. Suzuki, Y. Nakasha, T. Takahashi, K. Makiyama, T. Iwai, and N. Hara. Euro. Microwave Conf., https://doi.org/10.1109/EuMC.2015.7345825

  43. V.S. Mottonen and A.V. Raisanen. 34th Euro. Mocrowave Conf., https://doi.org/10.1109/APS.2013.6711794

  44. Y. Akaiwa. Introduction to digital mobile communication (Wiley, New York, 2015)

  45. I. Watanabe, Y. Yamashita, A. Endoh, S. Hara, A. Kasamatsu, I. Hosako, H. Hamada, T. Kosugi, M. Yaita, A.E. Moutaouakil, H. Matsuzaki, O. Kagami, T. Takahashi, Y. Kawano, Y. Nakasha, N. Hara, D. Tsuji, K. Isono, S. Fujikawa, and H.I. Fujishiro. IEEE Compd. Semicond. Integr. Circuit Symp., https://doi.org/10.1109/CSICS.2016.7751063

  46. G.P. Agrawal. Fiber-optic communication systems, 3rd edn., (Wiley, New York, 2011).

  47. G. Keller, A.T. Kamgaing, B. Munstermann, W. Prost, F.-J. Tegude, and M. Suhara. 25th Int. Conf. Indium Phosph Relat. Mater., https://doi.org/10.1109/ICIPRM.2013.6562641

  48. N. Okumura, K. Asakawa, and M. Suhara. 28th Int. Conf. Indium Phosph Relat. Mater., https://doi.org/10.1109/ICIPRM.2016.7528591

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Yamakura.

Appendices

Appendix A: Equivalent Circuit Parameters

Table 3 summarizes all of the equivalent circuit parameters and their basic physics with respect to antenna size, D, and line width, wshunt. As the EM field distribution around/on the oscillator is specific and complicated, it was quite difficult to evaluate the values of several parameters, whose “physics” states are therefore given as “N/A.”

Table 3 Values of Equivalent Circuit Parameters De-Embedded by Optimization Method (Dimensions: structural length [μm]), resistance [O], inductance [pH], capacitance [fF], and ξ [dimensionless]

Appendix B: Definitions of the Radiation Efficiency

In the case of the EM simulation, the radiation efficiency, ηEM(ω, D, wshunt), is defined as follows:

$$ \eta_{\text{EM}}(\omega,D,w_{shunt}) \equiv \frac{P_{rad(\text{EM})}(\omega,D,w_{shunt})}{P_{in(\text{EM})}(\omega,D,w_{shunt})}. $$
(24)

Prad(EM)(ω, D, wshunt) is the surface integral of the Poynting power on the radiated field.

$$ P_{rad(\text{EM})}(\omega,D,w_{shunt}) \!=\!\! \int \!\! \int_{S} \frac{\Re \left[\tilde{\boldsymbol{E}}(\omega,D,w_{shunt},\boldsymbol{r})\!\times\! \tilde{\boldsymbol{H}}^{*}(\omega,D,w_{shunt},\boldsymbol{r}) \right] }{2} \cdot d\boldsymbol{S}. $$
(25)

Pin(EM)(ω, D, wshunt) is given by,

$$\begin{array}{@{}rcl@{}} P_{in(\text{EM})}(\omega,D,w_{shunt})=\frac{\left| V_{0} \right|^{2}}{2Z_{0}}\left( 1 - \left| \tilde{{\Gamma}}_{\text{EM}}(\omega,D,w_{shunt}) \right|^{2} \right), \end{array} $$
(26)

where \(\tilde {{\Gamma }}_{\text {EM}}(\omega ,D,w_{shunt})\) is the reflection coefficient seen from the a-a port.

For the circuit analysis, the radiation efficiency, ηcir(ω, D, wshunt), is described as,

$$ \eta_{\text{cir}}(\omega,D,w_{shunt}) \equiv \frac{P_{rad(\text{cir})}(\omega,D,w_{shunt})}{P_{in(\text{cir})}(\omega,D,w_{shunt})}, $$
(27)

where

$$ P_{rad(\text{cir})}(\omega,D,w_{shunt})= \frac{|\tilde{V}_{rad}(\omega,D,w_{shunt})|^{2}}{2 R_{rad}(D,w_{shunt})} $$
(28)

is the power consumption by the radiated resistance, Rrad(D, wshunt). \(\tilde {V}_{rad}(\omega ,D,w_{shunt})\) is applied to Rrad(D, wshunt), depicted in Fig. 3a. The input power, Pin(cir)(ω, D, wshunt), is given by,

$$ P_{in(\text{cir})}(\omega,D,w_{shunt}) = \Re \left[ \frac{1}{2} \tilde{V}_{in(\text{cir})}(\omega,D,w_{shunt}) \tilde{I}_{in(\text{cir})}^{*}(\omega,D,w_{shunt}) \right], $$
(29)

where \(\tilde {V}_{in(\text {cir})}(\omega ,D,w_{shunt})\) and \(\tilde {I}_{in(\text {cir})}(\omega ,D,w_{shunt})\) are defined by,

$$\begin{array}{@{}rcl@{}} \tilde{V}_{in(\text{cir})}(\omega,D,w_{shunt})&= V_{0} \left[ 1 + \tilde{{\Gamma}}_{\text{cir}}(\omega,D,w_{shunt}) \right], \end{array} $$
(30)
$$\begin{array}{@{}rcl@{}} \tilde{I}_{in(\text{cir})}(\omega,D,w_{shunt})&=\frac{V_{0}}{Z_{0}} \left[ 1 - \tilde{{\Gamma}}_{\text{cir}}(\omega,D,w_{shunt}) \right], \end{array} $$
(31)
$$\begin{array}{@{}rcl@{}} \tilde{{\Gamma}}_{\text{cir}}(\omega,D,w_{shunt})&= \displaystyle \frac{Z_{in(\text{cir})}(\omega,D,w_{shunt})-Z_{0}}{Z_{in(\text{cir})}(\omega,D,w_{shunt})+Z_{0}}, \end{array} $$
(32)

where Zin(cir)(ω, D, wshunt) indicates the impedance seen from the a-a port.

Appendix C: Fundamental Equations for Oscillation Analysis

We derived simultaneous differential equations for the variables of the equivalent circuit shown in Fig. 5. All of the oscillation characteristics presented in this paper were analyzed by solving these equations. The numerical calculations were carried out using the fourth-order Runge-Kutta method:

$$ \frac{d i_{c}}{dt} = \frac{1}{2 L_{c}} [ V_{b} - R_{b} i_{c} - R_{L} (i_{c} -i_{E2})]. $$
(33)
$$ \frac{d i_{E1}}{dt} = \frac{1}{L_{E1}} (v_{CE} - R_{E} i_{E1}). $$
(34)
$$\begin{array}{@{}rcl@{}} \frac{d i_{st}}{dt} = \frac{1}{2 L_{st}} [v_{CL} - (2 R_{st} + R_{L}) i_{st}], \end{array} $$
(35)
$$ \frac{d v_{Crtd}}{dt} = \frac{1}{C_{rtd}} (i_{mesa} - i_{rtd}), $$
(36)
$$ \frac{d v_{CE}}{dt} = \frac{1}{C_{E}} (i_{E2} - i_{E1}), $$
(37)
$$ \frac{d v_{CL}}{dt} = \frac{1}{C_{L}} (i_{E} - i_{st}). $$
(38)
$$\begin{array}{@{}rcl@{}} \frac{d i_{gap}}{dt}&\!=\!& \left[{\displaystyle 2 \xi L_{arms} \left( 1 \!+\! \frac{L_{gap}}{L_{mesa}}\right) \!+\! L_{gap}}\right]^{-1} \times \left[ v_{Cas} - 2\xi R_{arms} (i_{mesa} + i_{gap})\right.\\ &&\left.\!- \left( \frac{2 \xi L_{arms}}{L_{mesa}}\right)\! (R_{gap} i_{gap} \!+\! v_{Cgap})\!+\!\> \frac{2 \xi L_{arms}}{L_{mesa}}(v_{rtd} \!+\! R_{mesa} i_{mesa}) \right] . \end{array} $$
(39)
$$ \frac{d i_{mesa}}{dt} = \frac{1}{L_{mesa}} (R_{gap} i_{gap} + L_{gap} A + v_{Cgap} - v_{rtd} - R_{mesa} i_{mesa}), $$
(40)

where the variable A is defined as \( \displaystyle A \equiv \frac {d i_{gap}}{dt}\).

$$ \frac{d i_{armin}}{dt} = \frac{1}{2 \xi L_{arms}}\left( v_{Cas} - 2 \xi R_{arms} i_{armin} - \> R_{gap} i_{gap} - L_{gap} A - v_{Cgap}\right). $$
(41)
$$ \frac{d v_{Cas}}{dt} = \frac{1}{C_{as}} (i_{armout} - i_{armin}), $$
(42)
$$ \frac{d v_{Csub}}{dt} = \frac{1}{C_{sub}} i_{sub}, $$
(43)
$$ \frac{d v_{CEsub}}{dt} = \frac{1}{C_{Esub}} i_{Esub}, $$
(44)
$$ \frac{d v_{CLsub}}{dt} = \frac{1}{C_{Lsub}} i_{Lsub}, $$
(45)
$$ \frac{d v_{Cgap}}{dt} = \frac{1}{C_{gap}} i_{gap}. $$
(46)
$$ \frac{d v_{Crad}}{dt} = \frac{1}{C_{rad}} i_{rad}, $$
(47)

where irad can be defined by,

$$ i_{rad}\equiv i_{E2} - i_{armout} - i_{E} - i_{Lsub} - i_{sub} - i_{Esub}. $$
(48)
$$ \frac{d i_{sub}}{dt} = \frac{1}{L_{sub}} [ v_{Crad} + R_{sub} i_{sub} - v_{Csub} + R_{rad} i_{rad}], $$
(49)
$$ \frac{d i_{Lsub}}{dt} =\frac{1}{L_{Lsub}} [ v_{Crad} + R_{Lsub} i_{Lsub} - v_{CLsub} + R_{rad} i_{rad}], $$
(50)
$$ \frac{d i_{Esub}}{dt} = - \frac{1}{L_{sub}}[ v_{Crad} +R_{Esub} i_{Esub} - v_{CEsub} + R_{rad} i_{rad}] . $$
(51)
$$ \frac{d i_{armout}}{dt}= [2 (1 - \xi ) L_{arms}]^{-1} (v_{Crad} + R_{rad} i_{rad} - v_{Cas}- 2 (1 - \xi ) R_{arms} i_{armout}). $$
(52)
$$ \frac{d i_{E2}}{dt} = \frac{-1}{L_{E2}} [ v_{Crad} + v_{CE} + R_{L} (i_{E2} - i_{c} ) + R_{rad} i_{rad}]. $$
(53)
$$ \frac{d i_{E}}{dt} = \frac{1}{2 L_{E}} [ v_{Crad} - v_{CL} + R_{rad} i_{rad}]. $$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamakura, H., Suhara, M. Proposal of Bow-Tie Antenna-Integrated Resonant Tunneling Diode Transmitter Utilizing Relaxation Oscillations and Its Application to Short-Distance Wireless Communications. J Infrared Milli Terahz Waves 39, 1087–1111 (2018). https://doi.org/10.1007/s10762-018-0518-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0518-y

Keywords

Navigation