Discrimination and Measurements of Three Flavonols with Similar Structure Using Terahertz Spectroscopy and Chemometrics

  • Ling Yan
  • Changhong Liu
  • Hao Qu
  • Wei Liu
  • Yan Zhang
  • Jianbo Yang
  • Lei Zheng
Article
  • 43 Downloads

Abstract

Terahertz (THz) technique, a recently developed spectral method, has been researched and used for the rapid discrimination and measurements of food compositions due to its low-energy and non-ionizing characteristics. In this study, THz spectroscopy combined with chemometrics has been utilized for qualitative and quantitative analysis of myricetin, quercetin, and kaempferol with concentrations of 0.025, 0.05, and 0.1 mg/mL. The qualitative discrimination was achieved by KNN, ELM, and RF models with the spectra pre-treatments. An excellent discrimination (100% CCR in the prediction set) could be achieved using the RF model. Furthermore, the quantitative analyses were performed by partial least square regression (PLSR) and least squares support vector machine (LS-SVM). Comparing to the PLSR models, the LS-SVM yielded better results with low RMSEP (0.0044, 0.0039, and 0.0048), higher Rp (0.9601, 0.9688, and 0.9359), and higher RPD (8.6272, 9.6333, and 7.9083) for myricetin, quercetin, and kaempferol, respectively. Our results demonstrate that THz spectroscopy technique is a powerful tool for identification of three flavonols with similar chemical structures and quantitative determination of their concentrations.

Keywords

Flavonols Terahertz spectroscopy Qualitative identification Quantitative measurement Chemometrics 

Notes

Acknowledgements

This study is supported by the National Key Research and Development Plan of China (2016YFD0401104), the National Natural Science Foundation of China (31401544), the Funds for Huangshan Professorship of Hefei University of Technology (407-037019), the Key Science and Technology Specific Projects of Anhui Province (16030701078), and the Fundamental Research Funds for the Central Universities (JZ2016HGTB0712, JZ2017HGTB0195).

Supplementary material

10762_2018_474_MOESM1_ESM.docx (224 kb)
ESM 1 (DOCX 224 kb)

References

  1. 1.
    M. G. L. Hertzog, P. C. H. Hollman, & M. B. Katan, “Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands”. Journal of Agricultural and Food Chemistry, vol. 40, pp. 2379–2383, 1992.CrossRefGoogle Scholar
  2. 2.
    J. D. Kim, L. Liu, W. Guo, & M. Meydani, “Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion”. The Journal of Nutritional Biochemistry, vol. 17(3), pp. 165–176, 2006.CrossRefGoogle Scholar
  3. 3.
    United States Department of Agriculture. USDA database for the flavonoid content of selected foods. Available from: https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/usda-special-interest-databases-on-flavonoids. pdf. Accessed 30.05.17, 2015.
  4. 4.
    R. Puupponen-Pimiä, L. Nohynek, C. Meier, M. Kähkönen, M. Heinonen, A. Hopia, & K.-M. Oksman-Caldentey. “Antimicrobial properties of phenolic compounds from berries”. Journal of applied microbiology, vol. 90(4), pp. 494–507, 2001.CrossRefGoogle Scholar
  5. 5.
    M. Škerget, P. Kotnik, M. Hadolin, A. R. Hraš, M. Simonič, & Ž. Knez, “Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities”. Food Chemistry, vol. 89(2), pp. 191–198, 2005.CrossRefGoogle Scholar
  6. 6.
    H. P. Kim, K. H. Son, H. W. Chang, & S. S. Kang, “Anti-inflammatory plant flavonoids and cellular action mechanisms”. Journal of Pharmacological Sciences, vol. 96(3), pp. 229–245, 2004.CrossRefGoogle Scholar
  7. 7.
    J. Lu, L. V. Papp, J. Fang, S. Rodriguez-Nieto, B. Zhivotovsky, & A. Holmgren, “Inhibition of mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activity”. Cancer Research, vol. 66(8), pp. 4410–4418, 2006.CrossRefGoogle Scholar
  8. 8.
    S. S. Pekkarinen, I. M. Heinonen, & A. I. Hopia, “Flavonoids quercetin, myricetin, kaemferol and (+)-catechin as antioxidants in methyl linoleate”. Journal of the Science of Food and Agriculture, vol. 79(4), 499–506, 1999.CrossRefGoogle Scholar
  9. 9.
    D. Labbé, M. Provençal, S. Lamy, D. Boivin, D. Gingras, & R. Béliveau, “The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration”. The Journal of Nutrition, vol. 139(4), pp. 646–652, 2009.CrossRefGoogle Scholar
  10. 10.
    P. Cos, L. Ying, M. Calomme, J. P. Hu, K. Cimanga, P. B. Van, L. Pieters, A. J. Vlietinck, & B. D. Vanden, “Structure- activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers”. Journal of Natural Products, vol. 61(1), pp. 71–76, 1998.CrossRefGoogle Scholar
  11. 11.
    M. Woillez, & J. M. Merillon, “Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays”. Journal of Agriculture and Food Chemistry, vol. 57, pp. 1768–1774, 2009.CrossRefGoogle Scholar
  12. 12.
    H. Bae, G. K. Jayaprakasha, J. Jifon, & B. S. Patil, “Extraction efficiency and validation of an HPLC method for flavonoid analysis in peppers”. Food Chemistry, vol. 130(3), pp. 751–758, 2012.CrossRefGoogle Scholar
  13. 13.
    M. R. Sohrabi, & G. Darabi, “The application of continuous wavelet transform and least squares support vector machine for the simultaneous quantitative spectrophotometric determination of Myricetin, Kaempferol and Quercetin as flavonoids in pharmaceutical plants”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 152, pp. 443–452, 2016.CrossRefGoogle Scholar
  14. 14.
    Y. Sun, N. Fang, D. D. Chen, & K. K. Donkor, “Determination of potentially anti-carcinogenic flavonoids in wines by micellar electrokinetic chromatography”. Food Chemistry, vol. 106(1), pp. 415–420, 2008.CrossRefGoogle Scholar
  15. 15.
    L. Yan, C. Xiong, H. Qu, C. Liu, W. Chen, & L. Zheng, “Non-destructive determination and visualisation of insoluble and soluble dietary fibre contents in fresh-cut celeries during storage periods using hyperspectral imaging technique”. Food Chemistry, vol. 228, pp. 249–256, 2017.CrossRefGoogle Scholar
  16. 16.
    C. Xiong, C. Liu, W. Pan, F. Ma, C. Xiong, L. Qi, F. Chen, X. Lu, J. Yang, L. Zheng, “Non-destructive Determination of Total Polyphenols Content and Classificationof Storage Periods of Iron Buddha Tea Using Multispectral Imaging System”. Food Chemistry, vol. 176, pp. 130–136, 2015.CrossRefGoogle Scholar
  17. 17.
    U. Khulal, J. Zhao, W. Hu, & Q. Chen, “Nondestructive quantifying total volatile basic nitrogen (TVB-N) content in chicken using hyperspectral imaging (HSI) technique combined with different data dimension reduction algorithms”. Food Chemistry, vol. 197, pp. 1191–1199, 2016.CrossRefGoogle Scholar
  18. 18.
    C. Liu, W. Liu, W. Chen, J. Yang, & L. Zheng, “Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit”. Food Chemistry, vol. 173, pp. 482–488, 2015.CrossRefGoogle Scholar
  19. 19.
    M. C. Beard, G. M. Turner, & C. A. Schmuttenmaer, “Terahertz spectroscopy”. Journal of Physical Chemistry B, vol. 106(29), pp. 7146–7159, 2002.CrossRefGoogle Scholar
  20. 20.
    M. Song, F. Yang, L. Liu, L. Shen, P. Hu, & F. Han, “Chemical Identification of Non-Esterified Catechins by Terahertz Time Domain Spectroscopy”. Journal of Nanoscience and Nanotechnology, vol. 16(12), pp. 12208–12213, 2016.CrossRefGoogle Scholar
  21. 21.
    A. Pohl, N. Deßmann, K. Dutzi, & H. W. Hübers, “Identification of unknown substances by terahertz spectroscopy and multivariate data analysis”. Journal of Infrared Millimeter & Terahertz Waves, vol. 37(2), pp. 1–14, 2016.CrossRefGoogle Scholar
  22. 22.
    Y. Ueno, R. Rungsawang, I. Tomita, & K. Ajito, “Quantitative measurements of amino acids by terahertz time-domain transmission spectroscopy”. Analytical Chemistry, vol. 78(15), pp. 5424–5428, 2006.CrossRefGoogle Scholar
  23. 23.
    S. H. Baek, H. K. Ju, Y. H. Hwang, M. O. Kang, K. Kwak, & H. S. Chun, Detection of methomyl, a carbamate insecticide, in food matrices using terahertz time-domain spectroscopy. Journal of Infrared Millimeter & Terahertz Waves, vol. 37(5), pp. 486–497, 2016.CrossRefGoogle Scholar
  24. 24.
    W. Liu, C. Liu, X. Hu, J. Yang, & L. Zheng, “Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics”. Food Chemistry, vol. 210, pp. 415–421, 2016.CrossRefGoogle Scholar
  25. 25.
    J. Liu, Z. Li, F. Hu, T. Chen, Y. Du, & H. Xin, “Identification of transgenic organisms based on terahertz spectroscopy and hyper sausage neuron”. Journal of Applied Spectroscopy, vol. 82, pp. 104–110, 2015.CrossRefGoogle Scholar
  26. 26.
    L. Duvillaret, F. Garet, & J. L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy”. Applied Optics, vol. 38(2), pp. 409–415, 1999.CrossRefGoogle Scholar
  27. 27.
    A. Candolfi, R. De Maesschalck, D. Jouan-Rimbaud, P. A. Hailey, & D. L. Massart, “The influence of data pre-processing in the pattern recognition of excipients near-infrared spectra”. Journal of Pharmaceutical and Biomedical Analysis, vol. 21(1), pp. 115–132, 1999.CrossRefGoogle Scholar
  28. 28.
    Q. Chen, J. Zhao, Z. Chen, H. Lin, & D.A. Zhao,"Discrimination of green tea quality using the electronic nose technique and the human panel test, comparison of linear and nonlinear classification tools". Sensors and Actuators B: Chemical, vol. 159(1), 294–300, 2011.CrossRefGoogle Scholar
  29. 29.
    P. J. García-Laencina, J. L. Sancho-Gómez, A. R. Figueiras-Vidal, & M. Verleysen, “K-nearest neighbours with mutual information for simultaneous classification and missing data imputation”. Neurocomputing, vol. 72(7), pp. 1483–1493, 2009.CrossRefGoogle Scholar
  30. 30.
    Q. Chen, J. Ding, J. Cai, & J. Zhao, "Rapid measurement of total acid content (TAC) in vinegar using near infrared spectroscopy based on efficient variables selection algorithm and nonlinear regression tools". Food Chemistry, vol. 135(2), 590–595, 2012.CrossRefGoogle Scholar
  31. 31.
    B. Ayerdi, & M. Graña, “Hyperspectral image nonlinear unmixing and reconstruction by ELM regression ensemble”. Neurocomputing, vol. 174, pp. 299–309, 2016.CrossRefGoogle Scholar
  32. 32.
    H. Martens, & M. Martens, “Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR)”. Food Quality and Preference, vol. 11(1), pp. 5–16, 2000.CrossRefGoogle Scholar
  33. 33.
    M. M. Adankon, & M. Cheriet, “Model selection for the LS-SVM Application to handwriting recognition”. Pattern Recognition, vol. 42(12), pp. 3264–3270, 2009.CrossRefMATHGoogle Scholar
  34. 34.
    Q. Chen, P. Jiang, & J. Zhao, “Measurement of total flavone content in snow lotus (Saussurea involucrate) using near infrared spectroscopy combined with interval PLS and genetic algorithm”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 76(1), pp. 50–55, 2010.MathSciNetCrossRefGoogle Scholar
  35. 35.
    C. Liu, G. Hao, M. Su, Y. Chen, & L. Zheng, "Potential of multispectral imaging combined with chemometric methods for rapid detection of sucrose adulteration in tomato paste". Journal of Food Engineering, vol. 215, 78–83, 2017.CrossRefGoogle Scholar
  36. 36.
    M. Walther, B. M. Fischer, & P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared”. Chemical Physics, vol. 288(2), pp. 261–268, 2003.CrossRefGoogle Scholar
  37. 37.
    L. Liu, R. Pathak, L. J. Cheng, & T. Wang, “Real-time frequency-domain terahertz sensing and imaging of isopropyl alcohol-water mixtures on a microfluidic chip”. Sensors and Actuators B: Chemical, vol. 184, 228–234, 2013CrossRefGoogle Scholar
  38. 38.
    C. Rønne, & S. R. Keiding, “Low frequency spectroscopy of liquid water using THz-time domain spectroscopy”. Journal of Molecular Liquids, vol. 101 (1–3), 199–218, 2002.CrossRefGoogle Scholar
  39. 39.
    M. L. T. Asaki, A. Redondo, T. A. Zawodzinski, & A. J. Taylor, “Dielectric relaxation and underlying dynamics of acetonitrile and 1-ethyl-3-methylimidazolium triflate mixtures using THz transmission spectroscopy”. The Journal of Chemical Physics, vol. 116(23), 10377–10385, 2002.CrossRefGoogle Scholar
  40. 40.
    A. Escarpa, & M. C. Gonzalez, "High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties". Journal of chromatography A, vol. 823(1), 331–337, 1998.CrossRefGoogle Scholar
  41. 41.
    X. Hu, W. Lang, W. Liu, X. Xu, J. Yang, & L. Zheng, “A non-destructive terahertz spectroscopy-based method for transgenic rice seed discrimination via sparse representation”. Journal of Infrared Millimeter & Terahertz Waves, vol. 38, pp. 1–12, 2017.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Food Science and EngineeringHefei University of TechnologyHefeiChina
  2. 2.School of Biological and Medical EngineeringHefei University of TechnologyHefeiChina
  3. 3.Intelligent Control and Compute Vision LabHefei UniversityHefeiChina
  4. 4.Hebei Food Inspection and Research Institute and Hebei Key Laboratory of Food SafetyShijiazhuangChina
  5. 5.Rice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina

Personalised recommendations