Skip to main content

The Use of FTIR Spectroscopy Combined with Multivariate Analysis in Food Composition Analysis

  • Chapter
  • First Online:
Spectroscopic Techniques & Artificial Intelligence for Food and Beverage Analysis

Abstract

Infrared spectroscopy, one of the vibrational spectroscopies, has emerged as rapid and powerful analytical technique for identification and quantitative analysis of food component. FTIR spectra is fingerprint analytical technique, therefore, by selecting the specific region, some analytical purposes can be achieved such as identification, confirmation and quantitative analysis of analyte(s) of interest in food samples. Equipped with some sampling technique such as attenuated total reflectance and combined with chemometrics software such as principal component analysis for classification and multivariate calibration for multicomponent analysis, FTIR spectroscopy has been successfully used for compositional analysis of food. The method is rapid with minimum or without sample preparation and is not involving the extensive solvents and reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy, 3rd edn. Thomson Learning, Inc., Boston, p 579

    Google Scholar 

  2. Cozzolino D (2014) An overview of the use of infrared spectroscopy and chemometrics in authenticity and traceability of cereals. Food Res Int 60:262–265. https://doi.org/10.1016/j.foodres.2013.08.034

    Article  CAS  Google Scholar 

  3. Teixeira AM, Sousa C (2019) A review on the application of vibrational spectroscopy to the chemistry of nuts. Food Chem 277:713–724. https://doi.org/10.1016/j.foodchem.2018.11.030

    Article  PubMed  CAS  Google Scholar 

  4. Tan HP, Ling SK, Chuah CH (2011) One- and two-dimensional Fourier transform infrared correlation spectroscopy of Phyllagathis rotundifolia. J Mol Struct 1006(1–3):297–302. https://doi.org/10.1016/j.molstruc.2011.09.023

    Article  CAS  Google Scholar 

  5. Rohman A (2019) The employment of Fourier transform infrared spectroscopy coupled with chemometrics techniques for traceability and authentication of meat and meat products. J Adv Vet Anim Res 6(1):9–17

    PubMed  Google Scholar 

  6. Moros J, Garrigues S, De Guardia M (2010) Vibrational spectroscopy provides a green tool for multi-component analysis. Trends Anal Chem 29(7):578–591. https://doi.org/10.1016/j.trac.2009.12.012

    Article  CAS  Google Scholar 

  7. Gredilla A, De Vallejuelo SF, Elejoste N, De Diego A, Madariaga JM (2016) Trends in analytical chemistry non-destructive spectroscopy combined with chemometrics as a tool for green chemical analysis of environmental samples: a review. Trends Anal Chem 76:30–39. https://doi.org/10.1016/j.trac.2015.11.011

    Article  CAS  Google Scholar 

  8. Li YS, Church JS (2014) Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. J Food Drug Anal 22(1):29–48. https://doi.org/10.1016/j.jfda.2014.01.003

    Article  PubMed  CAS  Google Scholar 

  9. Callao MP, Ruisánchez I (2018) An overview of multivariate qualitative methods for food fraud detection. Food Control 86:283–293

    CAS  Google Scholar 

  10. Pallone JAL, dos Caramês ET, Alamar PD (2018) Green analytical chemistry applied in food analysis: alternative techniques. Curr Opin Food Sci 22:115–121

    Google Scholar 

  11. Maree JE, Viljoen AM (2011) Fourier transform near- and mid-infrared spectroscopy can distinguish between the commercially important Pelargonium sidoides and its close taxonomic ally P. reniforme. Vib Spectrosc 55(2):146–152. https://doi.org/10.1016/j.vibspec.2010.10.005

    Article  CAS  Google Scholar 

  12. Man YBC, Syahariza ZA, Rohman A (2011) Fourier transform infrared (FTIR) spectroscopy: development, techniques, and application in the analyses of fats and oils. In: Fourier transform infrared spectroscopy: developments, techniques and applications. Nova Science Publisher, New York

    Google Scholar 

  13. Chakraborty DS (2016) Instrumentation of FTIR and its herbal applications. World J Pharm Pharm Sci 5(3):498–505

    CAS  Google Scholar 

  14. Rohman A (2017) The use of infrared spectroscopy in combination with chemometrics for quality control and authentication of edible fats and oils: A review. Appl Spectrosc Rev 52:7

    Google Scholar 

  15. Ma G, Allen HC (2004) Handbook of Spectroscopy, Volumes 1 and 2 Edited by Günter Gauglitz (University of Tübingen) and Tuan Vo-Dinh (Oak Ridge National Laboratory). Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. 2003. 1168 pp. $435.00. ISBN: 3-527-29782-0. Vol. 126. J Am Chem Soc 34:8859–8860

    Google Scholar 

  16. Ballabio D, Todeschini R (2009) Infrared spectroscopy for food quality analysis and control multivariate classification for qualitative analysis. Infrared Spectrosc Food Qual Anal Control 2009:83–104

    Google Scholar 

  17. von Aulock FW, Kennedy BM, Schipper CI, Castro JM, Martin D, Oze C et al (2014) Advances in Fourier transform infrared spectroscopy of natural glasses: From sample preparation to data analysis. Lithos 206–207(1):52–64. https://doi.org/10.1016/j.lithos.2014.07.017

    Article  CAS  Google Scholar 

  18. Hashimoto K, Badarla VR, Kawai A, Ideguchi T (2019) Complementary vibrational spectroscopy. Nat Commun 10(1):1–6. https://doi.org/10.1038/s41467-019-12442-9

    Article  CAS  Google Scholar 

  19. Davis SP, Abrams MC, Brault JW (2001) Theory of the ideal instrument. Fourier Transform Spectrom 2001:29–39

    Google Scholar 

  20. Robertson M, Elements V, Table P, Library B, Society TR, Society TR et al (2004) Organic spectroscopic analysis

    Google Scholar 

  21. Baeten V, Dardenne P (2002) Spectroscopy: Developments in instrumentation and analysis. Grasas Aceites 53(1):45–63

    CAS  Google Scholar 

  22. Stuart BH (2004) Infrared spectroscopy: fundamentals and applications, vol. 8, Methods, p 224. Available from http://doi.wiley.com/10.1002/0470011149

  23. United Stated Pharmacopeia (USP) 42, General method <854> mid infrared spectroscopy. https://online.uspnf.com/uspnf/document/GUID-21493947-8F57-4FC7-9338-FD47C1354A3A_4_en-US?highlight=854 © 2019 USPC. November 15, 2019

  24. Thermo Scientific (2013) Introduction to FT-IR sample handling. Thermo Fish Sci Inc., Waltham, pp 1–8

    Google Scholar 

  25. Shimadzu. Measurement Methods for Powder Samples : SHIMADZU (Shimadzu Corporation). [cited 2020 Mar 21]. Available from https://www.shimadzu.com/an/ftir/support/ftirtalk/talk8/intro.html

  26. Sun S-Q, Zhou Q, Chen J-B (2020) Infrared spectroscopy for complex mixtures: applications in food and traditional Chinese medicine. 2011 [cited 2020 Mar 21]. Available from http://books.google.es/books/about/Infrared_Spectroscopy_for_Complex_Mixtur.html?id=SUhIMwEACAAJ&pgis=1

  27. Sun DW (2009) Infrared spectroscopy for food quality analysis and control. infrared spectroscopy for food quality analysis and control. Elsevier Inc., Amsterdam

    Google Scholar 

  28. Thermo Scientific (2019) Move from investigate to solve Forensics compendium. Move from investigate to solve Forensics compendium. Thermo Scientific, Waltham

    Google Scholar 

  29. PerkinElmer (2005) FT-IR Spectroscopy Attenuated Total Reflectance (ATR). PerkinElmer Life Anal Sci. pp 1–5. Available from http://www.utsc.utoronto.ca/~traceslab/ATR_FTIR.pdf

  30. Griffiths PR, De Haseth JA (2006) Fourier transform infrared spectrometry, 2nd edn. Wiley, Hoboken, pp 1–529

    Google Scholar 

  31. Sciences N, Mada UG, Utara S, Mada UG, Utara S (2017) Attenuated total reflectance-FTIR spectra combined with multivariate calibration and discrimination analysis for analysis of patchouli oil adulteration. Indones J Chem 1:1–8

    Google Scholar 

  32. Smith BC (2002) Quantitative spectroscopy: theory and practice. Elsevier, Amsterdam, p 212

    Google Scholar 

  33. Bruker Optics Inc. Attenuated Total Reflection (ATR) – a versatile tool for FT-IR spectroscopy. Appl Note AN # 79. 2011. p 4

    Google Scholar 

  34. Van De Voort FR, Sedman J, Russin T (2001) Lipid analysis by vibrational spectroscopy. Eur J Lipid Sci Technol 103(12):815–826

    Google Scholar 

  35. Wellner N (2013) Fourier transform infrared (FTIR) and Raman microscopy: principles and applications to food microstructures. In: Food microstructures: microscopy, measurement and modelling. Elsevier Ltd, Amsterdam, pp 163–191

    Google Scholar 

  36. Infrared Microscopy Applications. [cited 2020 Mar 21]. Available from https://www.gia.edu/gia-news-research-Infrared-Microscopy-Applications

  37. Kazarian SG, KLA C (2013) ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems, vol 138. Royal Society of Chemistry, London, pp 1940–1951

    Google Scholar 

  38. Kimber JA, Kazarian SG (2017) Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers. Anal Bioanal Chem 409(25):5813–5820

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Perkinelmer. Infrared Imaging and Microscopy Systems. [cited 2020 Mar 21]. Available from: https://www.perkinelmer.com/lab-solutions/resources/docs/BRO_Spotlight400A.pdf

  40. Bruker Optics Inc. FT-IR microscopy - a powerful chemical imaging tool. [cited 2020 Mar 21]. Available from https://www.azom.com/article.aspx?ArticleID=5949

  41. PerkinElmer, Inc. Spotlight 200 FT-IR microscopy system redefining IR microscopy. [cited 2020 Mar 21]. Available from www.perkinelmer.com

  42. Maryse JEM. Application of FTIR microscopy to cultural heritage materials . 2009. [cited 2020 Mar 21]. Available from: http://amsdottorato.unibo.it/1404/

  43. Prati S, Joseph E, Sciutto G, Mazzeo R (2010) New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials. Acc Chem Res 43(6):792–801

    PubMed  CAS  Google Scholar 

  44. Paper W. Microplastics analysis doesn’t need to be so hard simplify microplastics analysis through a rapid

    Google Scholar 

  45. Noda I (1990) Two-dimensional infrared (2D IR) spectroscopy: theory and applications. Appl Spectrosc 44(4):550–561

    CAS  Google Scholar 

  46. Khairudin K, Sukiran NA, Goh HH, Baharum SN, Noor NM (2014) Direct discrimination of different plant populations and study on temperature effects by Fourier transform infrared spectroscopy. Metabolomics 10(2):203–211

    CAS  Google Scholar 

  47. Rohman A, Arsanti L, Erwanto Y, Pranoto Y (2016) The use of vibrational spectroscopy and chemometrics in the analysis of pig derivatives for halal authentication. Int Food Res J 23:5

    Google Scholar 

  48. Daszykowski M, Walczak B (2006) Use and abuse of chemometrics in chromatography. TrAC - Trends Anal Chem 25(11):1081–1096

    CAS  Google Scholar 

  49. Granato D, Putnik P, Kovačević DB, Santos JS, Calado V, Rocha RS et al (2018) Trends in chemometrics: food authentication, microbiology, and effects of processing. Compr Rev Food Sci Food Saf 17(3):663–677

    Google Scholar 

  50. Singh SK, Jha SK, Chaudhary A, Yadava RDS, Rai SB (2010) Quality control of herbal medicines by using spectroscopic techniques and multivariate statistical analysis. Pharm Biol 48(2):134–141

    PubMed  CAS  Google Scholar 

  51. Ferreira GWD, Roque JV, Soares EMB, Silva IR, Silva EF, Vasconcelos A et al (2018) Temporal decomposition sampling and chemical characterization of eucalyptus harvest residues using NIR spectroscopy and chemometric methods. Talanta 188:168–177

    PubMed  CAS  Google Scholar 

  52. Lasch P (2012) Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom Intell Lab Syst 117:100–114

    CAS  Google Scholar 

  53. Lai Y, Ni Y, Kokot S (2011) Discrimination of Rhizoma Corydalis from two sources by near-infrared spectroscopy supported by the wavelet transform and least-squares support vector machine methods. Vib Spectrosc 56(2):154–160. https://doi.org/10.1016/j.vibspec.2011.01.007

    Article  CAS  Google Scholar 

  54. Singh I, Juneja P, Kaur B, Kumar P (2013) Pharmaceutical Applications of Chemometric Techniques. ISRN Anal Chem 2013:1–13

    Google Scholar 

  55. Leardi R (2009) Experimental design in chemistry: a tutorial. Anal Chim Acta 652(1–2):161–172

    PubMed  CAS  Google Scholar 

  56. Krakowska B, Custers D, Deconinck E, Daszykowski M (2016) Journal of Pharmaceutical and Biomedical Analysis Chemometrics and the identification of counterfeit medicines — a review. J Pharm Biomed Anal 127:112–122. https://doi.org/10.1016/j.jpba.2016.04.016

    Article  PubMed  CAS  Google Scholar 

  57. Gad HA, El-Ahmady SH, Abou-Shoer MI, Al-Azizi MM (2013) Application of chemometrics in authentication of herbal medicines: a review. Phytochem Anal 24(1):1–24

    PubMed  CAS  Google Scholar 

  58. Rodionova OY, Pomerantsev AL (2006) Chemometrics: achievements and prospects. Russ Chem Rev 75(4):271–287

    CAS  Google Scholar 

  59. Nunes CA, Freitas MP, Pinheiro ACM, Bastos SC (2012) Chemoface: a novel free user-friendly interface for chemometrics. J Braz Chem Soc 23(11):2003–2010

    CAS  Google Scholar 

  60. Rodriguez-Saona LE, Allendorf ME (2011) Use of FTIR for rapid authentication and detection of adulteration of food. Annu Rev Food Sci Technol 2(1):467–483

    PubMed  CAS  Google Scholar 

  61. De Marchi M, Toffanin V, Cassandro M, Penasa M (2014) Invited review: mid-infrared spectroscopy as phenotyping tool for milk traits. J Dairy Sci 1:1171–1186

    Google Scholar 

  62. Khan U, Afzaal M, Arshad MS, Imran M (2018) Non-destructive analysis of food adulteration and legitimacy by FTIR technology. J Food Ind Microbiol 1(1):1–7

    Google Scholar 

  63. Deconinck E, Djiogo CAS, Bothy JL, Courselle P (2017) Detection of regulated herbs and plants in plant food supplements and traditional medicines using infrared spectroscopy. J Pharm Biomed Anal 142:210–217

    PubMed  CAS  Google Scholar 

  64. Su W-H, Sun D-W (2018) Fourier transform infrared and Raman and hyperspectral imaging techniques for quality determinations of powdery foods: a review. Compr Rev Food Sci Food Saf 17(1):104–122

    Google Scholar 

  65. Li Q, Chen J, Huyan Z, Kou Y, Xu L, Yu X et al (2019) Application of Fourier transform infrared spectroscopy for the quality and safety analysis of fats and oils: a review. Rev Food Science Nutr 59:3597–3611

    CAS  Google Scholar 

  66. Valand R, Tanna S, Lawson G, Bengtström L (2020) A review of Fourier transform infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Addit Contam 37:19–38

    CAS  Google Scholar 

  67. Sun S, Chen J, Zhou Q, Lu G, Chan K (2010) Application of mid-infrared spectroscopy in the quality control of traditional Chinese medicines. Planta Med 76:1987–1996

    PubMed  CAS  Google Scholar 

  68. McGraw B (2015) Reversing the traditional drug development model. PerkinElmer, Waltham, pp 1–4

    Google Scholar 

  69. Cheng N (2013) Application of Fourier-transform infrared (FTIR) for quality control of Swiss cheese. Ohio State Univ 84:487–492

    Google Scholar 

  70. Pupeza I, Huber M, Trubetskov M, Schweinberger W, Hussain SA, Hofer C et al (2020) Field-resolved infrared spectroscopy of biological systems. Nature 577(7788):52–59

    PubMed  CAS  Google Scholar 

  71. Miaw CSW, Assis C, Silva ARCS, Cunha ML, Sena MM, de Souza SVC (2018) Determination of main fruits in adulterated nectars by ATR-FTIR spectroscopy combined with multivariate calibration and variable selection methods. Food Chem 254:272–280

    PubMed  CAS  Google Scholar 

  72. Canteri MHG, Renard CMGC, Le Bourvellec C, Bureau S (2019) ATR-FTIR spectroscopy to determine cell wall composition: application on a large diversity of fruits and vegetables. Carbohydr Polym 212:186–196

    PubMed  CAS  Google Scholar 

  73. Song SY, Kim CH, Im SJ, Kim IJ (2018) Discrimination of citrus fruits using FT-IR fingerprinting by quantitative prediction of bioactive compounds. Food Sci Biotechnol 27(2):367–374

    PubMed  CAS  Google Scholar 

  74. Song SY, Lee YK, Kim IJ (2016) Sugar and acid content of citrus prediction modeling using FT-IR fingerprinting in combination with multivariate statistical analysis. Food Chem 190:1027–1032

    PubMed  CAS  Google Scholar 

  75. Santos DI, Neiva Correia MJ, Mateus MM, Saraiva JA, Vicente AA, Moldão M (2019) Fourier transform infrared (FT-IR) spectroscopy as a possible rapid tool to evaluate abiotic stress effects on pineapple by-products. Appl Sci 9(19):4141

    CAS  Google Scholar 

  76. Olale K, Walyambillah W, Mohammed SA, Sila A, Shepherd K (2017) Application of DRIFT-FTIR spectroscopy for quantitative prediction of simple sugars in two local and two Floridian mango (Mangifera indica L.) cultivars in Kenya. J Anal Sci Technol 8(1):1–13

    Google Scholar 

  77. Skolik P, Morais CLM, Martin FL, McAinsh MR (2019) Determination of developmental and ripening stages of whole tomato fruit using portable infrared spectroscopy and chemometrics. BMC Plant Biol 19(1):236

    PubMed  PubMed Central  Google Scholar 

  78. Olale K, Walyambillah W, Mohammed SA, Sila A, Shepherd K (2019) FTIR-DRIFTS-based prediction of β-carotene, α-tocopherol and l-ascorbic acid in mango (Mangifera indica L.) fruit pulp. SN Appl Sci 1(3):1–11

    CAS  Google Scholar 

  79. Park YS, Im MH, Ham KS, Kang SG, Park YK, Namiesnik J et al (2015) Quantitative assessment of the main antioxidant compounds, antioxidant activities and FTIR spectra from commonly consumed fruits, compared to standard kiwi fruit. LWT- Food Sci Technol 63(1):346–352

    CAS  Google Scholar 

  80. Yaman N, Velioglu SD (2019) Use of attenuated total reflectance—Fourier transform infrared (ATR-FTIR) spectroscopy in combination with multivariate methods for the rapid determination of the adulteration of grape, carob and mulberry PEKmez. Foods 8:7

    Google Scholar 

  81. Craig AP, Franca AS, Oliveira LS (2012) Evaluation of the potential of FTIR and chemometrics for separation between defective and non-defective coffees. Food Chem 132(3):1368–1374

    PubMed  CAS  Google Scholar 

  82. Obeidat SM, Hammoudeh AY, Alomary AA (2018) Application of FTIR spectroscopy for assessment of green coffee beans according to their origin. J Appl Spectrosc 84(6):1051–1055

    CAS  Google Scholar 

  83. Bernardino-Nicanor A, Acosta-García G, Güemes-Vera N, Montañez-Soto JL, de los Ángeles Vivar-Vera M, González-Cruz L (2017) Fourier transform infrared and Raman spectroscopic study of the effect of the thermal treatment and extraction methods on the characteristics of ayocote bean starches. J Food Sci Technol 54(4):933–943

    PubMed  CAS  Google Scholar 

  84. Monje AFB, Parrado LX, Gutiérrez-Guzmán N (2018) ATR-FTIR for discrimenation of espresso and Americano coffee pods. Coffee Sci 13(4):550–558

    Google Scholar 

  85. González-Cruz L, Montañez-Soto JL, Conde-Barajas E, de la Negrete-Rodríguez M, Flores-Morales A, Bernardino-Nicanor A (2018) Spectroscopic, calorimetric and structural analyses of the effects of hydrothermal treatment of rice beans and the extraction solvent on starch characteristics. Int J Biol Macromol 107(PartA):965–972

    PubMed  Google Scholar 

  86. Plans M, Simó J, Casañas F, Sabaté J, Rodriguez-Saona L (2013) Characterization of common beans (Phaseolus vulgaris L.) by infrared spectroscopy: comparison of MIR, FT-NIR and dispersive NIR using portable and benchtop instruments. Food Res Int 54(2):1643–1651

    CAS  Google Scholar 

  87. Gok S, Severcan M, Goormaghtigh E, Kandemir I, Severcan F (2015) Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chem 170:234–240

    PubMed  CAS  Google Scholar 

  88. Amir RM, Anjum FM, Khan MI, Khan MR, Pasha I, Nadeem M (2013) Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties. J Food Sci Technol 50(5):1018–1023

    PubMed  CAS  Google Scholar 

  89. Dong D, Zhao C, Zheng W, Wang W, Zhao X, Jiao L (2013) Analyzing strawberry spoilage via its volatile compounds using longpath Fourier transform infrared spectroscopy. Sci Rep 3:1

    Google Scholar 

  90. Xiao G, Dong D, Liao T, Li Y, Zheng L, Zhang D et al (2015) Detection of pesticide (Chlorpyrifos) residues on fruit peels through spectra of volatiles by FTIR. Food Anal Methods 8(5):1341–1346

    Google Scholar 

  91. Batista NN, de Andrade DP, Ramos CL, Dias DR, Schwan RF (2016) Antioxidant capacity of cocoa beans and chocolate assessed by FTIR. Food Res Int 90:313–319

    PubMed  CAS  Google Scholar 

  92. Raba DN, Poiana M-A, Borozan AB, Stef M, Radu F, Popa M-V (2015) Investigation on crude and high-temperature heated coffee oil by ATR-FTIR spectroscopy along with antioxidant and antimicrobial properties. PLoS One 10(9):e0138080

    PubMed  PubMed Central  Google Scholar 

  93. Lee B-J, Zhou Y, Lee JS, Shin BK, Seo J-A, Lee D et al (2018) Discrimination and prediction of the origin of Chinese and Korean soybeans using Fourier transform infrared spectrometry (FT-IR) with multivariate statistical analysis. PLoS One 13(4):e0196315

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Teo Wei Boon (PerkinElmer, Singapore) for preparing 2D-FT-IR of Curcuma longa during short visit at the Faculty of Pharmacy, Airlangga University, Surabaya (2016), Dr. Robert Packer (PerkinElmer, Shelton, CA, USA) and Dr. Tan Boon Chun (PerkinElmer Selangor, Malaysia) for permission to reproduce some figures, Ms. Febry Ardiana (PT Bernofarm, Sidoarjo, Surabaya) for reference (USP 42, General method <854>) [23].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rohman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Indrayanto, G., Rohman, A. (2020). The Use of FTIR Spectroscopy Combined with Multivariate Analysis in Food Composition Analysis. In: Shukla, A. (eds) Spectroscopic Techniques & Artificial Intelligence for Food and Beverage Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-15-6495-6_2

Download citation

Publish with us

Policies and ethics