Advertisement

Refractive Index and Absorption Coefficient of Undoped and Mg-Doped Lithium Tantalate in the Terahertz Range

  • Andrea Buzády
  • Márta Unferdorben
  • György Tóth
  • János Hebling
  • Ivett Hajdara
  • László Kovács
  • László Pálfalvi
Article

Abstract

Dielectric material parameters of lithium tantalate (LT) in the terahertz region have been investigated using terahertz time-domain spectroscopy (THz-TDS). Undoped congruent, undoped stoichiometric, and Mg-doped stoichiometric LT crystals were measured. The Mg content was 0.5 and 1.0 mol% for the stoichiometric composition. Index of refraction and absorption coefficient spectra were determined in the 0.3–2.0-THz frequency range for beam polarization both parallel (extraordinary polarization) and perpendicular (ordinary polarization) to the optical axis [001] of the crystal at room temperature. For the calculation of the refractive index and absorption coefficient spectra from the measured data, we used TeraMat software (Menlo System) belonging to the spectrometer. The refractive index and the absorption coefficient for stoichiometric crystals were lower than for the congruent one. In the case of stoichiometric crystals, the Mg dopant caused a slight reduction of both ordinary and extraordinary refractive index compared to the undoped crystal. However, the presence of Mg did not reduce the absorption coefficient either for the ordinary or for the extraordinary polarization. In order to fit the measurement data, a Lorentz oscillator model was used. Good agreement was obtained between the measured data and the fitting curves by using the Lorentz oscillator model containing three terms.

Keywords

Congruent lithium tantalate Stoichiometric lithium tantalate Terahertz frequency range Refractive index Absorption coefficient Time-domain terahertz spectroscopy 

References

  1. 1.
    J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, J. Kuhl, Appl. Phys. B., 78, 593 (2004)CrossRefGoogle Scholar
  2. 2.
    Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, A. Galvanauskas, Applied Physics Letters, 76 (18), 2505 (2000)CrossRefGoogle Scholar
  3. 3.
    Y. S. Lee, T. Meade, M. DeCamp, T. Norris, A. Galvanauskas, Applied Physics Letters, 77 (9), 1244 (2000)CrossRefGoogle Scholar
  4. 4.
    N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y.L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, S. Takekawa, Applied Physics Letters, 93 (4), 041104 (2008)CrossRefGoogle Scholar
  5. 5.
    L. Tokodi, A. Buzady, J. Hebling, L. Pálfalvi, Applied Physics B., 122, 235 (2016)CrossRefGoogle Scholar
  6. 6.
    C. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, M. Wöhlecke, Journal of Applied Physics, 93 (5), 3102 (2003)CrossRefGoogle Scholar
  7. 7.
    W. T. Hsu, Z. B. Chen, C. C. Wu, R. K. Choubey, C. W. Lan, Materials, 5 (2), 227 (2012)CrossRefGoogle Scholar
  8. 8.
    A. L. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, M. M. Fejer, SPIE Conference on Laser material Crystal Growth and Nonlinear Materials and Devices, SPIE Vol. 3610 (1999)Google Scholar
  9. 9.
    K. Kitamura, Y. Furukawa, S. Takekawa, T. Hatanaka, H. Ito, V. Gopalan, Ferroelectrics, 257 (1), 235 (2001)CrossRefGoogle Scholar
  10. 10.
    W. D. Johnston, Jr., I. P. Kaminow, Phys. Rev., 168, 1045 (1968)CrossRefGoogle Scholar
  11. 11.
    A. F. Penna, A. Chaves, P. R. de Andrade, S. P. S. Porto, Phys. Rev. B, 13, 4907 (1976)CrossRefGoogle Scholar
  12. 12.
    H. J. Bakker, S. Hunsche, H. Kurz, Phys. Rev. B, 48, 13524 (1993)CrossRefGoogle Scholar
  13. 13.
    M. Schall, H. Helm, S. R. Keiding, International Journal of Infrared and Millimeter Waves, 20, 595 (1999)CrossRefGoogle Scholar
  14. 14.
    S. Kojima, H. Kitahara, S. Nishizawa, M. W. Takeda, Japanese Journal of Applied Physics, 42 (9), 6238 (2003)CrossRefGoogle Scholar
  15. 15.
    S. Kojima,T. Mori, AIP Conference Proceedings, 1627 , 52 (2014) doi: 10.1063/1.4901657 CrossRefGoogle Scholar
  16. 16.
    L. Wu, L. Jiang, C. Ding, Q. Sheng, J Infrared Milli Terahz Waves, 36, 1 (2015)CrossRefGoogle Scholar
  17. 17.
    Nan Ei Yu, Kyu-Sup Lee, Do-Kyeong Ko, Shunji Takekawa, Kenji Kitamura, 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2015 DOI: 10.1109/CLEOPR.2015.7375829
  18. 18.
    M. Unferdorben, A. Buzády, J. Hebling, K. Kiss, I. Hajdara, L. Kovács, Á. Péter, L. Pálfalvi, J. Infrared Milli. Terahz. Waves, 37, 703 (2016)CrossRefGoogle Scholar
  19. 19.
    K. Wiesauer, C. Jördens, J. Infrared Milli. Terahz. Waves, 34, 663 (2013)CrossRefGoogle Scholar
  20. 20.
    S. Wang, Q. Liang, X. Tao, T. Dekorsy, Opt. Mat. Exp., 4, 575 (2014)CrossRefGoogle Scholar
  21. 21.
    K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, T. Hayashi, J. of Crystal Growth, 116, 327–332 (1992)CrossRefGoogle Scholar
  22. 22.
    Y. Furukawa, K. Kitamura, E. Suzuki, K. Niwa, J. of Crystal Growth, 197, 889–895 (1999)CrossRefGoogle Scholar
  23. 23.
    X. C. Zhang, Introduction to THz wave photonics (Springer, Dordrecht, 2010), pp. 50CrossRefGoogle Scholar
  24. 24.
    P. U. Jepsen, B. M. Fischer, Opt. Lett., 30, 29 (2005)CrossRefGoogle Scholar
  25. 25.
    I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, G. Gadret, Applied Physics B, 96, 423 (2009)CrossRefGoogle Scholar
  26. 26.
    L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, K. Polgár, J. Appl. Phys., 97, 123505 (2005)CrossRefGoogle Scholar
  27. 27.
    M. Unferdorben, Zs. Szaller, I. Hajdar, J. Hebling, L. Pálfalvi, J. Infrared Milli. Terahz. Waves, 36, 1203 (2015)CrossRefGoogle Scholar
  28. 28.
    K. Polgár, L. Kovács, I. Földvári, I. Cravero, Solid State Commun, 59, 375 (1986)CrossRefGoogle Scholar
  29. 29.
    Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, H. Hatano, Opt. Lett., 23, 1892 (1998)CrossRefGoogle Scholar
  30. 30.
    K. Lengyel, Á. Péter, K. Polgár, L. Kovács, G. Corradi, In Physica Status Solidi C: Conferences, (1 ed., Vol. 2, pp. 171–174). (2005)Google Scholar
  31. 31.
    L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, K. Polgár, K. Lengyel, R. Szipőcs, J. Appl. Phys., 95, 902 (2004)CrossRefGoogle Scholar
  32. 32.
    G. P. Wiederrecht, T.P. Dougherty, L. Dhar, K. A. Nelson, D. E. Leaird, A.M. Weiner, Phys. Rev. B, 51, 916 (1995)CrossRefGoogle Scholar
  33. 33.
    A. S. Barker, A. A. Ballmann, J. A. Ditzenberger, Phys. Rev. B, 2, 4236 (1970)Google Scholar
  34. 34.
    I. P. Kaminow, W. D. Johnston, Phys. Rev., 15, 519 (1967)CrossRefGoogle Scholar
  35. 35.
    H. Igawa, T. Mori, S. Kojima, Jpn. J. Appl. Phys., 53, 05FE01–1 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Andrea Buzády
    • 1
  • Márta Unferdorben
    • 1
  • György Tóth
    • 2
  • János Hebling
    • 1
    • 2
  • Ivett Hajdara
    • 3
  • László Kovács
    • 3
  • László Pálfalvi
    • 1
  1. 1.Institute of PhysicsUniversity of PécsPécsHungary
  2. 2.MTA-PTE High-Field Terahertz Research GroupPécsHungary
  3. 3.Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations