Skip to main content
Log in

Cylindrical Cavity with Distributed Longitudinal Corrugations for Second-Harmonic Gyrotrons

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Metallic cavity with distributed longitudinal corrugations is proposed and studied for the use in a subterahertz second-harmonic gyrotron. The corrugated conducting walls are treated as a homogeneous surface with effective (averaged) anisotropic impedance. The theoretical study incorporates both single-mode and coupled-mode approaches. It is shown that the distributed longitudinal corrugations provide several-fold increase in the Q-value of the operating mode with respect to that of the fundamental competing mode at a reasonable level of ohmic losses and mode conversion in the gyrotron cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Tonouchi, Cutting-edge terahertz technology, Nature Photonics 1, 97–105 (2007).

    Article  Google Scholar 

  2. M. Yu. Glyavin, G. G. Denisov, V. E. Zapevalov, M. A. Koshelev, M. Yu. Tretyakov, and A. I. Tsvetkov, High power terahertz sources for spectroscopy and material diagnostics, Physics-Uspekhi 59, 595–604 (2016).

    Article  Google Scholar 

  3. M. Yu. Glyavin, and A. G. Luchinin, Powerful terahertz gyrotrons based on pulsed magnets, Terahertz Science and Technology 2, 150–155 (2009).

    Google Scholar 

  4. M. Yu. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R. Pu, A 670 GHz gyrotron with record power and efficiency, Applied Physics Letters 101, 153503 (2012).

    Article  Google Scholar 

  5. T. Idehara, T. Tatsukawa, I. Ogawa, T. Mori, H. Tanabe, S. Wada, G. F. Brand, and M. H. Brennan, Competition between fundamental and second harmonic operations in a submillimeter wave gyrotron, Applied Physics Letters 58, 1594–1596 (1991).

    Article  Google Scholar 

  6. G. F. Brand, T. Idehara, T. Tatsukawa, and I. Ogawa, Mode competition in a high harmonic gyrotron, Int. J. Electron. 72, 745–758 (1992).

    Article  Google Scholar 

  7. V. L. Bratman, A. E. Fedotov, and T. Idehara, Temporal dynamics of mode interaction in submillimeter-wave second-harmonic gyrotron, Int. J. Infrared Millim. Waves 22, 1409–1420 (2001).

    Article  Google Scholar 

  8. S. H. Kao, C. C. Chiu, and K. R. Chu, A study of sub-terahertz and terahertz gyrotron oscillators, Phys. Plasmas 19, 023112 (2012).

    Article  Google Scholar 

  9. V. E. Zapevalov, S. A. Malygin, V. G. Pavel'ev, and Sh. E. Tsimring, Coupled-resonator gyrotrons with mode conversion, Radiophys. Quantum Electron. 27, 846–852 (1984).

    Article  Google Scholar 

  10. H. Li, Z.-L. Xie, W. Wang, Y. Luo, P. Du, X. Den, H. Wang, S. Yu, X. Niu, L. Wang, and S. Liu, A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system, IEEE Trans. Plasma Sci. 31, 264–271 (2003).

    Article  Google Scholar 

  11. Y. Liu, X. Niu, S. Yu, H. Li, J. Rao, J. Zhou, C. Lei, H. Jiang, and Y. Yang, Design and experimental demonstration of a 94-GHz gyrotron with complex cavity operating at the second harmonic, Journal of Fusion Energy 32, 182–188 (2013).

    Article  Google Scholar 

  12. S. Spira-Hakkarainen, K. E. Kreischer, and R. J. Temkin, Submillimeter-wave harmonic gyrotron experiment, IEEE Trans. Plasma Sci. 18, 334–342, (1990).

    Article  Google Scholar 

  13. D. Sun, H. Chen, G. Ma, W. Lei, H. Chen, and F. Meng, A W-band third harmonic gyrotron with an iris cavity, J Infrared Millim. Terahertz Waves 35, 458–467 (2014).

    Article  Google Scholar 

  14. E. Borie. Study for second harmonic gyrotrons in the submillimeter region, Int. J Infrared Millim. Waves 15, 311–337 (1994).

    Article  Google Scholar 

  15. S. N. Vlasov, L. I. Zagryadskaya, and I. M. Orlova, Open coaxial resonators for gyrotrons, Radioeng. Electron. Phys. 21, 96–102 (1976).

    Google Scholar 

  16. G. S. Nusinovich, M. E. Read, O. Dumbrajs, and K. E. Kreischer, Theory of gyrotrons with coaxial resonators, IEEE Trans. Electron Devices 41, 433–438 (1994).

    Article  Google Scholar 

  17. J. J. Barroso, and R. A. Correa, Coaxial resonator for a megawatt 280 GHz gyrotron, Int. J Infrared Millim. Waves 12, 717–728 (1991).

    Article  Google Scholar 

  18. C. T. Iatrou, S. Kern, and A. B. Pavelyev, Coaxial cavities with corrugated inner conductor for gyrotrons, IEEE Trans. Microwave Theory Tech. 44, 56–64 (1996).

    Article  Google Scholar 

  19. C. T. Iatrou, Mode selective properties of coaxial gyrotron resonators, IEEE Trans. Plasma Sci. 24, 596–605 (1996).

    Article  Google Scholar 

  20. J. J. Barroso, R. A. Correa, and P. Jose de Castro, Gyrotron coaxial cylindrical resonators with corrugated inner conductor: theory and experiment, IEEE Trans. Microwave Theory Tech. 46, 1221–1230 (1998).

    Article  Google Scholar 

  21. K. A. Avramides, C. T. Iatrou, and J. L. Vomvoridis, Design considerations for powerful continuous-wave second-cyclotron-harmonic coaxial-cavity gyrotrons, IEEE Trans. Plasma Sci. 32, 917–928 (2004).

    Article  Google Scholar 

  22. P. J. Castro, J. J. Barroso, and R. A. Correa, Ohmic selection in open coaxial resonators: an experimental study, Int. J Infrared Millim. Waves 14, 2191–2201 (1993).

    Article  Google Scholar 

  23. K. A. Avramides, J. L. Vomvoridis, and C. T. Iatrou, Coaxial gyrotron cavities with resistive corrugated insert for powerful second-harmonic operation, AIP Conference Proceedings 807, 264–270 (2006).

    Article  Google Scholar 

  24. La Agusu, T. Idehara, H. Mori, T. Saito, I. Ogawa, and S. Mitsudo,Design of a CW 1 THz gyrotron (Gyrotron FU CW III) using a 20 T superconducting magnet, Int. J Infrared Millim. Waves 25, 315–328 (2007).

    Article  Google Scholar 

  25. A. C. Torrezan, S.-T. Han, I. Mastovsky, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, A. B. Barnes, and R. G. Griffin, Continuous-wave operation of a frequency-tunable 460-GHz second-harmonic gyrotron for enhanced nuclear magnetic resonance, IEEE Trans. Plasma Sci. 38, 1150–1159 (2010).

    Article  Google Scholar 

  26. O. Dumbrajs, E. M. Khutoryan, and T. Idehara, Hysteresis and frequency tunability of gyrotrons, J Infrared Millim. Terahertz Waves 37, 551–560 (2016).

    Article  Google Scholar 

  27. S. F. Mahmoud, Electromagnetic waveguides: theory and applications (The Institution of Engineering and Technology, London, 2006), pp. 67–110.

    Google Scholar 

  28. M. Miyagi, and S. Kawakami, Design theory of dielectric-coated circular metallic waveguides for infrared transmission, Journal of Lightwave Technology 2, 116–126 (1984).

    Article  Google Scholar 

  29. V. I. Shcherbinin, Circular waveguide with anisotropic impedance surface as an equivalent model for dielectric waveguides used in gyro-devices, in Proc. 2016 I.E. Int. Conf. on Mathematical Methods in Electromagnetic Theory, 46–49 (2016).

  30. V. I. Shcherbinin, G. I. Zaginaylov, and V. I. Tkachenko, Analogy between circular core-cladding and impedance waveguides and their membrane functions, Progress in Electromagnetic Research M 53, 111–120 (2017).

    Article  Google Scholar 

  31. V. I. Shcherbinin, On single-mode analysis of dielectric-loaded gyrotron cavity, in Proc. 2016 I.E. Int. Conf. on Mathematical Methods in Electromagnetic Theory, 138–141 (2016).

  32. V. I. Shcherbinin, G. I. Zaginaylov, and V. I. Tkachenko, Cavity with distributed dielectric coating for subterahertz second-harmonic gyrotron, Problems of Atomic Science and Technology. Plasma Physics 106, 255–258 (2016).

    Google Scholar 

  33. S. N. Vlasov, G. M. Zhislin, I. M. Orlova, M. I. Petelin, and G. G. Rogacheva, Irregular waveguides as open resonators, Radiophys. Quantum Electron. 12, 972–978 (1969).

    Article  Google Scholar 

  34. J. M. Neilson, P. E. Latham, M. Caplan, and W. G. Lawson, Determination of the resonant frequencies in a complex cavity using the scattering matrix formulation, IEEE Trans. Microw. Theory Techn. 37, 1165–1170 (1989).

    Article  Google Scholar 

  35. D. Wagner, G. Gantenbein, W. Kasparek, and M. Thumm, Improved gyrotron cavity with high quality factor, Int. J Infrared Millim. Waves 16, 1481–1489 (1995).

    Article  Google Scholar 

  36. A. W. Fliflet, and M. E. Read, Use of weakly irregular waveguide theory to calculate eigenfrequencies, Q values, and RF field functions for gyrotron oscillators, Int. J. Electron. 51, 475–484 (1981).

    Article  Google Scholar 

  37. E. Borie, and O. Dumbrajs, Calculation of eigenmodes of tapered gyrotron resonators, Int. J. Electron. 60, 143–154 (1986).

    Article  Google Scholar 

  38. E. Borie, and O. Dumbrajs, A complex cavity with mode conversion for gyrotrons, Int. J. Electron. 65, 285–295 (1988).

    Article  Google Scholar 

  39. A. N. Vlasov, and T. M. Antonsen, Jr., Numerical solution of fields in lossy structures using MAGY, IEEE Trans. Electron Devices 48, 45–55 (2001).

    Article  Google Scholar 

  40. A. Z. Elsherbeni, J. Stanier, and M. Hamid, Eigenvalues of propagating waves in a circular waveguide with an impedance wall, IEE Proceedings H 135, 23–26 (1988).

    Google Scholar 

  41. V. I. Shcherbinin, G. I. Zaginaylov, and V. I. Tkachenko, HE and EH hybrid waves in a circular dielectric waveguide with an anisotropic impedance surface, Problems of Atomic Science and Technology. Plasma Electronics and New Methods of Acceleration 98, 89–93 (2015).

  42. S. Y. Park, and J. L. Hirshfield, Theory of wakefields in a dielectric-lined waveguide, Phys. Rev. E 62, 1266–1283 (2000).

    Article  Google Scholar 

  43. B. Z. Katsenelenbaum, High-frequency electrodynamics (Wiley-VCH, Weinheim, 2006), pp. 75–91.

    Book  Google Scholar 

  44. C. Dragone, Reflection, transmission, and mode conversion in a corrugated feed, Bell System Technical Journal 56, 835–867 (1977).

    Article  Google Scholar 

  45. C. Dragone, Scattering at a junction of two waveguides with different surface impedances, IEEE Trans. Microw. Theory Techn. 32, 1319–1328 (1984).

    Article  Google Scholar 

  46. H. Li, and M. Thumm, Mode coupling in corrugated waveguides with varying wall impedance and diameter change, Int. J. Electron. 71, 827–844 (1991).

    Article  Google Scholar 

  47. H. Li, F. Xu, and S. Liu, Theory of harmonic gyrotron with multiconductors structure, Int. J. Electron. 65, 409–418 (1988).

    Article  Google Scholar 

  48. A. S. Ilyinsky, G. Ya. Slepyan, and A. Ya. Slepyan, Propagation, scattering and dissipation of electromagnetic waves (Peter Peregrinus Ltd., London, 1993), pp. 212–216.

    Book  MATH  Google Scholar 

  49. S. Hou, S. Yu, and H. Li, Ohmic losses in coaxial cavity gyrotron with outer corrugation, Chin. Phys. Lett. 30, 120201 (2013).

    Article  Google Scholar 

  50. O. Dumbrajs, and G. S. Nusinovich, Coaxial gyrotrons: past, present, and future (review), IEEE Trans. Plasma Sci. 32, 934–946 (2004).

    Article  Google Scholar 

  51. T. B. A. Senior, Impedance boundary conditions for imperfectly conducting surfaces, Applied Scientific Research, Section B 8, 418–436 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  52. H. Liu, M. Yan, M. Qiu, D. Liu, X. Yu, and Y. Zhang, Theoretical investigation on guiding IR light in hollow-core metallic fiber with corrugated inner surface, Opt. Express 18, 21959–21964 (2010).

    Article  Google Scholar 

  53. R. B. Dybdal, L. Peters, and W. H. Peake, Rectangular waveguides with impedance walls, IEEE Trans. Microwave Theory Tech. 19, 2–8 (1971).

    Article  Google Scholar 

  54. Y. J. Huang, K. R. Chu, and M. Thumm, Self-consistent modeling of terahertz waveguide and cavity with frequency-dependent conductivity, Phys. Plasmas 21, 013108 (2015).

    Article  Google Scholar 

  55. F. Braunmueller, T. M. Tran, Q. Vuillemin, S. Alberti, J. Genoud, J.-Ph. Hogge, and M. Q. Tran, TWANG-PIC, a novel gyro-averaged one-dimensional particle-in-cell code for interpretation of gyrotron experiments, Phys. Plasmas 22, 063115 (2015).

    Article  Google Scholar 

  56. P. C. Kalaria, K. A. Avramidis, J. Franck, G. Gantenbein, S. Illy, I. Gr. Pagonakis, M. Thumm, and J. Jelonnek, Systematic cavity design approach for a multi-frequency gyrotron for DEMO and study of its RF behavior, Phys. Plasmas 23, 092503 (2016).

    Article  Google Scholar 

  57. Z. C. Ioannidis, K. A. Avramidis, and I. G. Tigelis, Selectivity properties of coaxial gyrotron cavities with mode converting corrugations, IEEE Trans. Electron Devices 63, 1299–1306 (2016).

    Article  Google Scholar 

  58. B. Piosczyk, A. Arnold, G. Dammertz, O. Dumbrajs, M. Kuntze, and M. K. Thumm, Coaxial cavity gyrotron—recent experimental results, IEEE Trans. Plasma Sci. 30, 819–827 (2002).

    Article  Google Scholar 

  59. M. Thumm, T. Rzesnicki, B. Piosczyk, J. Flamm, G. Gantenbein, S. Illy, J. Jin, S. Kern, A. Samartsev, and A. Schlaich, 2.2 MW record power of the 0.17 THz European pre-prototype coaxial-cavity gyrotron for ITER, Terahertz Science and Technology 3, 1–20 (2010).

    Google Scholar 

  60. A. V. Gaponov, A. L. Gol'denberg, D. P. Grigor'ev, T. B. Pankratova, M. I. Petelin, and V. A Flyagin, Experimental investigation of centimeter-band gyrotrons, Radiophys. Quantum Electron. 18, 204–211 (1975).

    Article  Google Scholar 

  61. B. G. Danly, and R. J. Temkin, Generalized nonlinear harmonic gyrotron theory, Phys. Fluids 29, 561–567 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalii I. Shcherbinin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbinin, V.I., Tkachenko, V.I. Cylindrical Cavity with Distributed Longitudinal Corrugations for Second-Harmonic Gyrotrons. J Infrared Milli Terahz Waves 38, 838–852 (2017). https://doi.org/10.1007/s10762-017-0386-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-017-0386-x

Keywords

Navigation