Skip to main content
Log in

Slow-Wave Characteristics of a Frame–Rod Structure Based on Micro-Fabricated Technology for THz Vacuum Electron Devices

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A simple equivalent circuit analysis of the frame–rod slow-wave structure (SWS) on dielectric substrates of a traveling-wave tube (TWT) is developed, using the quasi-TEM approximation approach for the dispersion and coupling impedance characteristics of the structure. Moreover, the obtained complex dispersion equation and coupling impedance are numerically calculated. The calculation results by our theory method agree well with the results obtained by the 3D EM simulation software HFSS. It is shown that the dispersion of the frame–rod circuit is decreased; the phase velocity is reduced and the bandwidth becomes greater, while the coupling impedance decreases after filling the dielectric materials in the frame–rod SWS. In addition, a comparison of slow-wave characteristics of this structure with a rectangular helix counterpart is made. As a planar slow-wave structure, this structure has potential applications in compact TWTs based on the micro-fabrication technology, which could be scaled to millimeter wave, even to THz frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Nebuloni and G. Orsenigo, “Microwave power module for space applications,” IEEE Trans. Electron Devices, vol. 48, no. 1, pp. 88–94, Jan. 2001.

  2. Carol Kory, Lawrence Ives, Mike Read, Purobi Phillips, John Booske, Suede Bhattacharjee, John Welter, Matt Genack, Hongrui Jiang, Dan van der Weide, and Steve Limbach, “Novel TWT Interaction Circuits for High Frequency Application”, in Proc. 5th IEEE Int. Vacuum Electron. Conf., Eur. Space Agency, Apr. 2004, pp. 51–52.

  3. J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, P. Jaehun, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 54–75, Sep. 2011.

  4. R. L. Ives,“Microfabrication of high-frequency vacuum electron devices”, IEEE Trans. Plasma Sci., 32, 3, 1277–1291, (2004).

    Article  Google Scholar 

  5. S. Bhattacharjee, J. H. Booske, C. L. Kory, D. W. van der Weide, S. Limbach, S. Gallagher, J. D. Welter, M. R. Lopez, R. M. Gilgenbach, R. L. Ives, M. E. Read, R. Divan, and D. C. Mancini, “Folded waveguide traveling-wave tube sources for terahertz radiation”, IEEE Trans. Plasma Sci., 32, 3, 1002–1014, (2004).

    Article  Google Scholar 

  6. Y. M. Shin, J. K. So, S. T. Han, K. H. Jang, G. S. Park, J. H. Kim and S. S. Chang, “Microfabrication of millimeter wave vacuum electron devices by two-step deep-etch x-ray lithography”, Appl. Phys. Lett., 88,091916, (2006).

    Article  Google Scholar 

  7. R. Zheng, W. Sun and X. Chen, “Characterizing and smoothing of striated sidewall morphology on UV-exposed thick SU-8 structures for micromachining millimeter wave circuits”, J. Micromech. Microeng., 20, 3, (2010).

    Google Scholar 

  8. Y. M. Shin, G. S. Park, G. P. Scheitrum and B. Arfin, “Novel coupled-cavity TWT structure using two-step LIGA fabrication”, IEEE Trans. Plasma Sci., 31, 6, 1317–1324, (2003).

    Article  Google Scholar 

  9. C. W. Baik, Y. M. Son, S. I. Kim, S. C. Jun, J. S. Kim, J. S. Hwang; J. M. Kim, S. W. Moon, H. J. Kim, J. K. So, G. S. Park, “Microfabricated coupled-cavity backward-wave oscillator for terahertz imaging”, IEEE Int. Vacuum Electron. Conf., 398, (2008).

  10. O. Kwon, J. K. So, A. Srivastava, M. Sattorov, R. K. Barik, A. Bera, A. K. Tanwar, S. H. Park, I. K. Baik, J. H. Choi, J. Kim, J. W. Yang, J. H. Kim, S. S. Chang, G. S. Park, “Micro-fabricated millimeter wave vacuum electron devices”, Int. Conf. on Infrared, Millimeter, and Terahertz Waves, pp. 2, (2010).

  11. L. Earley, B. Carlsten, F. Krawczyk, J. Potter, F. Sigler, E. Smirnova, R. Wheat, C. Heath and A. Bailey, “Wideband RF structure for millimeter wave TWTs”, AIP Conference Proceedings, 807, 335–341, (2006).

    Article  Google Scholar 

  12. Y. M. Shin, L. R. Barnett, D. Gamzina, N. C. Luhmann, Jr., M. Field and R. Borwick, “Terahertz vacuum electron circuits fabricated by UV lithographic molding and deep reactive ion etching”, Appl. Phys. Lett., 95, 181505, (2009).

    Article  Google Scholar 

  13. C. Paoloni, F. Brunetti, A. Di Carlo, M. Mineo, E. Tamburri, M.L.Terranova, G. Ulisse, A. Durand, R. Marchesin, K. Pham, V. Krozer, M. Kotiranta, A. de Rossi, D. Dolfi, P. Guiset, P. Legagneux, J.P. Schnell, A. Fiorello, M. Dispenza, A. Secchi, V. Zhurbenko, S. Megtert, F. Bouamrane, C.-S. Cojocaru, A. Gohier, “The OPTHER project: progress toward the THz amplifier”, IEEE Int. Vacuum Electron. Conf., Bangalore, India, pp. 55–56, (2011).

  14. S. Sengele, H. Jiang, J. H. Booske, C. Kory, D. van der Weide and L. Ives, “Microfabrication and characterization of a selectively metallized W-band meander-line TWT circuit”, IEEE Trans. on Electron Devices, 56, 5, 730–737, (2009).

    Article  Google Scholar 

  15. J. A. Dayton, Jr., C. Kory, G. Mearini, D. Malta, M. Lueck, and K. Gilchrist, “Applying microfabrication to helical vacuum electron devices for THz applications”, IEEE Int. Vacuum Electron. Conf., (2009).

  16. Cier Siang Chua, Ming Lin Julius Tsai, Min Tang, Sheel Aditya, Zhong Xiang Shen, Microfabrication of a Planar Helix with Straight-Edge Connections Slow-Wave Structure. Advanced Materials Research 254:17-20, (2011).

  17. Chengfang Fu, Yanyu Wei, Wenxiang Wang, Yubin Gong, . IEEE Transactions on Electron Devices 55 (12):3582-3589, Dec. 2008.

  18. M. Chodorow and E. L. Chu, “Cross-wound twin helices for traveling wave tubes”, J. Appl. Phys., 26, 1, 33–43, (1955).

    Article  Google Scholar 

  19. C. K. Birdsall and T. E. Everhart, “Modified contra-wound helix circuits for high-power traveling-wave tubes”, IRE Trans. Electron Devices, 3, 4, 190–204, (1956).

    Article  Google Scholar 

  20. Ciersiang Chua, Sheel Aditya, Julius M. Tsai, Min Tang, and Zhongxiang Shen, “Microfabricated Planar Helical Slow-Wave Structures Based on”, Terahertz Science and Technology, Vol.4, No.4, December 2011,208-229.

  21. As h, E.A., “Dispersion and impedance of dielectric-supported ring-and-bar slow-wave circuits”, Porc. IEE, Vol.111, No.4, April, (1964), 629–641.

  22. Cain W. N., Grow R.W., “The effect of dielectric and metal loading on dispersion characteristics for contrawound helix circuits used in high power travelling-wave tubes,” IEEE Trans. Electron Devices, vol. 37, no. 6, Jun. 1990, pp. 1566–1578.

  23. Fletcher, R. C., “A broadband interdigital circuit for use in travelling-wave-tube amplifiers”, Proc. lust. Radio Engrs, August, 1952, 40, pp. 951–958.

  24. Watkins, D., “Topics in electromagnetic theory”, (Wiley, 1958), pp. 10–15.

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 61401173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengfang Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Zhao, B., Yang, Y. et al. Slow-Wave Characteristics of a Frame–Rod Structure Based on Micro-Fabricated Technology for THz Vacuum Electron Devices. J Infrared Milli Terahz Waves 37, 1106–1116 (2016). https://doi.org/10.1007/s10762-016-0309-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0309-2

Keywords

Navigation