Skip to main content
Log in

Theoretical and Experimental Studies of Terahertz Wave Propagation in Unmagnetized Plasma

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The spacecraft will experience the well-known “blackout” problem when it re-entry into the Earth’s atmosphere, which results in communication failures between the spacecraft and the ground control center. It is important to study the properties of terahertz (THz) wave propagation in plasma for communications using THz wave is an alternative method for solving the blackout problem. The properties of THz wave propagation in plasma have been studied with the ZT-FDTD (Z-Transform Finite Difference Time Domain) method and experimental method in this paper. The dependence of plasma density, plasma collision frequency, thickness of plasma and THz wave frequency on the THz wave propagation are presented. The properties of 0.22THz electromagnetic wave propagation in plasma have been studied experimentally with shock tube, and the experimental results are in good agreement with the FDTD ones. Both the FDTD and experimental results indicate that communications using THz wave is an alternative and effective way to solve the blackout problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. H. Mitchell, Proc. IEEE 55, 619(1967).

    Article  Google Scholar 

  2. J. P. Rybak and R. J. Churchill, IEEE Trans. Aerospace Electron. Syst. AES-7, 879(1971).

    Article  Google Scholar 

  3. X. J. Zeng, Z. F. Yu, S. Q. Bu, S. Liu, P. Ma, A. H. Shi and S. C. Liang, Acta Aerodyn. Sin. 28, 645(2010).

    Article  Google Scholar 

  4. M. Keidar, M. Kim and I. D. Boyd, J. Spacecraft Rockets 45, 445(2008).

    Article  Google Scholar 

  5. M. Kim, M. Keidar and I. D. Boyd, J. Spacecraft Rockets 45, 1223(2008).

    Article  Google Scholar 

  6. C. J. Schexnayder, J. S. Evans and P. W. Huber, NASA SP-252, 277(1970).

    Google Scholar 

  7. J. E. Shen, J. Rong and W. X. Liu, Infrared Laser Eng. 35, 342(2006).

    Google Scholar 

  8. M. Martl, J. Darmo, D. Dietze, K. Unterrainer and E. Gomik, J. Appl. Phys. 107, 013110(2010).

    Article  Google Scholar 

  9. M. Koch, Terahertz frequency detection and identification of materials and object (Braunschweig, 2007), pp.325-328.

  10. D. M. Vavriv, V. A. Volkov and V. G. Churmak, Proceedings of the 37th European Microwave Conference, Kharkov, Ukraine, October 9-12, 2007.

  11. Y. J. Ding, The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Bethlehem, Palestine, October 22-28, 2005.

  12. C. X. Yuan, Z. X. Zhou, X. L. Xiang, H. G. Sun, H. Wang, M. D. Xing and Z. J. Luo, Nucl. Instrum. Methods Phys. Res. B 269, 23(2011).

    Article  Google Scholar 

  13. S. B. Liu, T. Zhou, M. L. Liu and W. Hong, J. Syst. Eng. Electron. 19, 15(2008).

    MATH  Google Scholar 

  14. Z. Tosun, D. Akbar and H. Altan, 34th International Conference on Infrared, Millimeter, and Terhertz Waves, Busan, Korea, September 21-25, 2009.

  15. B. Chaudhury and S. Chaturvedi, Phys. Plasmas 13, 123302(2006).

    Article  Google Scholar 

  16. J. F. Liu, X. L. Xi, G. B. Wan and L. L. Wang, IEEE Tran. Plasma Sci. 39, 852(2011).

    Article  Google Scholar 

  17. M. Nishimoto and H.Ikuno, J. Electromagnet. Wave 18, 181(2004).

  18. D. M. Sullivan, Electromagneitc simulation using the FDTD method ( New York, 2000), pp.27-29.

  19. C. Thoma, D. V. Rose, C. L. Miller, R. E. Clark and T. P. Hughes, J. Appl.Phys. 106, 043301(2009).

    Article  Google Scholar 

  20. M. Kim, M. Keidar and I. D. Boyd, IEEE Tran. Plasma Sci. 36, 1198(2008).

    Article  Google Scholar 

  21. C. X. Yuan, Z. X. Zhou, X. L. Xiang, H. G. Sun and S. Z. Pu, Phys. Plasmas 17, 113304(2010).

    Article  Google Scholar 

  22. C. X. Yuan, Z. X. Zhou, J. W. Zhang, X. L. Xiang, F. Yue and H. G. Sun, IEEE Tran. Plasma Sci. 39, 1577(2011).

    Article  Google Scholar 

  23. H. W. Yang, W. C. Tang and X. K. Kong, Int. J. Infrared Milli. Waves 28, 547(2007).

    Article  Google Scholar 

  24. S. B. Liu, J. J. Mo and N. C. Yuan, Int. J. Infrared Milli. Waves 23, 1803(2002).

    Article  Google Scholar 

  25. C. X. Yuan, Z. X. Zhou and H. G. Sun, IEEE Tran. Plasma Sci. 38, 3348(2010).

    Article  Google Scholar 

  26. S. P. Jamison, J. L. Shen, D. R. Jones, R. C. Issac, B. Ersfeld, D. Clark and D. A. Jaroszynski. J. Appl. Phys. 93, 4334(2003).

    Article  Google Scholar 

  27. J. Hilenrath and M.Klein, Tables of thermodynamic properties of air in chemical equilibrium including second virial cprrections form 1500K to 15000K (Virginia, 1965), pp.18-35.

  28. Y. Chang, Numerical research on supersonic/hypersonic plasma flow and its electromagnetic characteristics (Changsha, China, 2009), pp.34-64.

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (Grant No. 2011AA7022016), the National Natural Science Foundation of China (Grant No.11275045) and the National Special Projects of International Scientific and Technological Cooperation (Grant No. 2011DFA63190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, L., Zhao, Q., Liu, S. et al. Theoretical and Experimental Studies of Terahertz Wave Propagation in Unmagnetized Plasma. J Infrared Milli Terahz Waves 35, 187–197 (2014). https://doi.org/10.1007/s10762-013-0035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-0035-y

Keywords

Navigation