Skip to main content
Log in

Intense Terahertz Pulse-Induced Nonlinear Responses in Carbon Nanotubes

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

By using intense terahertz(THz) monocycle pulses, nonlinear light-matter interaction in aligned semiconducting single-walled carbon nanotubes(SWNTs) embedded in a polymer film was investigated. THz electric-field-induced ultrafast Stark effect of one-dimensional excitons in SWNTs was observed at room temperature, suggesting the potential functionality of SWNTs for high speed electro-optic devices operating at telecom wavelength with a THz bandwidth. When the peak electric field amplitude exceeds 200 kV/cm, the generation of excitons by the THz pump becomes prominent. The mechanism is described by the above-gap excitation of electrons and holes in SWNTs due to the impact excitation process induced by the intense THz electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. For a recent review, see e.g., M. C. Hoffmann and J. A. Fülöp, J. Phys. D: Appl. Phys. 44, 083001 (2011).

    Google Scholar 

  2. For a recent review, also see e.g., K. Tanaka, H. Hirori, and M. Nagai, IEEE Trans. Terahertz Science and Technology, 1, 301 (2011).

    Google Scholar 

  3. J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, Opt. Express 10, 1161 (2002).

    Google Scholar 

  4. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, J. Opt. Soc. Am. B 25, B6 (2008).

    Article  Google Scholar 

  5. A. Sell, A. Leitenstorfer, and R. Huber, Opt. Lett. 35, 2645 (2010).

    Article  Google Scholar 

  6. S. Watanabe, N. Minami, and R. Shimano, Opt. Express 19, 1528 (2011); ibid 19, 15388 (2011).

    Article  Google Scholar 

  7. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, Appl. Phys. Lett. 98, 091106, (2011).

    Article  Google Scholar 

  8. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

    MathSciNet  Google Scholar 

  9. H. Hirori, M. Nagai, and K. Tanaka, Phys. Rev. B 81, 081305(R) (2010)

    Article  Google Scholar 

  10. M. C. Hoffmann, B. S. Monozon, D. Livshits, E. U. Rafailov, and D. Turchinovich, Appl. Phys. Lett. 97, 231108 (2010).

    Article  Google Scholar 

  11. K. B. Nordstrom, K. Johnsen, S. J. Allen, A.-P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, Phys. Rev. Lett. 81, 457 (1998).

    Article  Google Scholar 

  12. A. D. Jameson, J. L. Tomaino, Y.-S. Lee, J. P. Prineas, J. T. Steiner, M. Kira, and S. W. Koch, Appl. Phys. Lett. 95, 201107 (2009).

    Article  Google Scholar 

  13. M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. M. Andrews, S. Schartner, G. Strasser, and M. Helm, Phys. Rev. Lett. 105, 167401 (2010).

    Article  Google Scholar 

  14. B. Zaks, D. Stehr, T.-A. Truong, P. M. Petroff, S. Hughes, and M. S. Sherwin, New J. Phys. 13, 083009 (2011).

    Article  Google Scholar 

  15. A. G. Markelz, N. G. Asmar, B. Brar, and E. G. Gwinn, Appl. Phys. Lett. 69, 3975 (1996).

    Article  Google Scholar 

  16. H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, and K. Tanaka, Nature Commun. 2, 594 (2011).

    Article  Google Scholar 

  17. M. C. Hoffmann, J. Hebling, H. Y. Hwang, Ka-Lo Yeh, and K. A. Nelson, Phys. Rev. B 79, 161201 (2009).

    Article  Google Scholar 

  18. W. Kuehn, K. Reimann, M. Woerner, and T. Elsaesser, J. Chem. Phys. 130, 164503 (2009).

    Article  Google Scholar 

  19. F. H. Su, F. Blanchard, G. Sharma, L. Razzari, A. Ayesheshim, T. L. Cocker, L. V. Titova, T. Ozaki, J.-C. Kieffer, R. Morandotti, M. Reid, and F. A. Hegmann, Opt. Express 17, 9620 (2010).

    Article  Google Scholar 

  20. J. Hebling , M. C. Hoffmann, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, Phys. Rev. B 81, 035201 (2010).

    Article  Google Scholar 

  21. W. Kuehn, P. Gaal, K. Reimann, M. Woener, T., Elsaesser, and R. Hey, Phys. Rev. Lett. 104, 146602 (2010).

    Article  Google Scholar 

  22. T. Ogawa, S. Watanabe, N. Minami, and R. Shimano, Appl. Phys. Lett. 97, 041111 (2010).

    Article  Google Scholar 

  23. Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze, J. Phys. D Appl. Phys. 22, 682 (1989).

    Article  Google Scholar 

  24. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, Appl. Phys. Lett. 74, 1516 (1999).

    Article  Google Scholar 

  25. Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 70, 1784 (1997).

    Article  Google Scholar 

  26. B. Kitiyanan, W. E. Alvarez, J. H. Harwell, and D. E. Resasco, Chem. Phys. Lett. 317, 497 (2000).

    Article  Google Scholar 

  27. S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, J. Am. Chem. Soc. 125, 11186 (2003).

    Article  Google Scholar 

  28. Y. Kim, N. Minami, and S. Kazaoui, Appl. Phys. Lett. 86, 073103 (2005).

    Article  Google Scholar 

  29. N. Minami, Y. J. Kim, K. Miyashita, S. Kazaoui, and B. Nalini, Appl. Phys. Lett. 88, 093123 (2006).

    Article  Google Scholar 

  30. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Phys. Rev. B 32, 6601 (1985).

    Article  Google Scholar 

  31. L. Lüer, S. Hoseinkhani, D. Polli, J. Crochet, T. Hertel, and G. Lanzani, Nature Phys. 5, 54 (2009).

    Article  Google Scholar 

  32. J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and Ph. Avouris, Science 310, 1171 (2005).

    Article  Google Scholar 

  33. A. Liao, Y. Zhao, and E. Pop, Phys. Rev. Lett. 101, 256804 (2008).

    Article  Google Scholar 

  34. N. M. Gabor, Z. Zhong, K. Bosnick, J. Park, and P. L. McEuen, Science 325, 1367 (2009).

    Article  Google Scholar 

  35. V. Perebeinos and Ph. Avouris, Phys. Rev. B 74, 121410(R) (2006).

    Article  Google Scholar 

  36. P. Avouris, M. Freitag, and V. Perebeinos, Nat Photon 2, 341–350 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Shimano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimano, R., Watanabe, S. & Matsunaga, R. Intense Terahertz Pulse-Induced Nonlinear Responses in Carbon Nanotubes. J Infrared Milli Terahz Waves 33, 861–869 (2012). https://doi.org/10.1007/s10762-012-9914-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-012-9914-x

Keywords

Navigation