Skip to main content
Log in

Terahertz Photon Mixing Effect in Gapped Graphene

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We theoretically calculate the terahertz waves mixing effect in doped graphene with a finite bandgap. The temperature dependence of the nonlinear intraband optical response at bandgap opening of few tens of meV are investigated. When the external electric field is weak, a moderate level of bandgap opening is found to slightly enhance the nonlinear optical response. The optical response is however significantly altered under strong-field condition. The strong-field nonlinear optical conductivity exhibits two distinct response ‘hot spot’: (i) low temperature with large bandgap and (ii) high temperature with small bandgap. The electric field required for the nonlinear response to dominate over the linear response is typically in the order of 104 V/cm. This value increases rapidly by a factor of 10 in large bandgap and high temperature regimes. Our results suggest that photon mixing effect in gapped graphene is strongly gapped dependent and hence the bandgap opening has to be carefully engineered in order to optimize the photon mixing effect in gapped graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666–669 (2004).

    Article  Google Scholar 

  2. A. K. Geim, K. S. Novoselov, Nature Mater. 6, 183–191 (2007).

    Article  Google Scholar 

  3. Y. Zhang, Y. Tan, H. L. Sormer, P. Kim, Nature (London) 438, 201–204 (2005).

    Google Scholar 

  4. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 146, 351–355 (2008).

    Article  Google Scholar 

  5. A. B. Kuzmenko, E. van Heumen, F. Carbone, D. van der Marel, Phys. Rev. Lett. 100, 117401 (2008).

    Article  Google Scholar 

  6. C. Zhang, L. Chen, Z. Ma, Phys. Rev. B 77, 241402(R) (2008).

    Article  Google Scholar 

  7. V. P. Gusynin, S. G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005).

    Article  Google Scholar 

  8. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Science 315, 1379 (2007).

    Article  Google Scholar 

  9. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, A. K. Geim, Phys. Rev. Lett. 97, 016801 (2006).

    Article  Google Scholar 

  10. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature (London) 438, 197–200 (2005).

    Article  Google Scholar 

  11. J. O. Sofo, A. S. Chaudhari, G. D. Barber, Phys. Rev. B 75, 153401 (2007).

    Article  Google Scholar 

  12. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. O. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, Science 30, 610–613 (2009).

    Article  Google Scholar 

  13. G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly,J. van den Brink, Phys. Rev. B 76, 073103 (2007).

    Article  Google Scholar 

  14. S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D. H. Lee, F. Guinea, A. H. Castro Neto, A. Lanzara, Nature Mater. 6, 770–775 (2007).

    Article  Google Scholar 

  15. L. Chen, Z. Ma, C. Zhang, Appl. Phys. Lett. 96, 023107 (2010).

    Article  Google Scholar 

  16. C. L. Kane, E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

    Article  Google Scholar 

  17. A. R. Wright, X. G. Xu, J. C. Cao, C. Zhang, Appl. Phys. Lett. 95, 072101 (2009).

    Article  Google Scholar 

  18. S. A. Mikhailov, Europhys. Lett. 79, 27002 (2007).

    Article  Google Scholar 

  19. Y. S. Ang, S. Sultan, C. Zhang, Appl. Phys. Lett. 97, 243110 (2010).

    Article  Google Scholar 

  20. Y. S. Ang, C. Zhang, Appl. Phys. Lett. 98, 042107 (2011).

    Article  Google Scholar 

  21. S. Sultan, Y. S. Ang, C. Zhang, J. Opt. Soc. Am. B 29, 274–279 (2012) .

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ang, Y.S., Sultan, S., Tawfiq, A. et al. Terahertz Photon Mixing Effect in Gapped Graphene. J Infrared Milli Terahz Waves 33, 816–824 (2012). https://doi.org/10.1007/s10762-012-9899-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-012-9899-5

Keywords

Navigation