Skip to main content
Log in

Recent Developments on High-Power Gyrotrons—Introduction to This Special Issue

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Gyrotrons with output powers of several 100 kW are mainly used as high-power millimeter (mm)-wave sources for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. Other applications include ECR ion sources, materials processing and plasma chemistry, high-resolution Doppler radar, radar ranging and imaging in atmospheric and planetary science, active denial systems, as well as detection of concealed radioactive materials. The present review summarizes the status of recent developments on high-power gyrotrons and introduces this Special Issue on Gyrotrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. V.L. Granatstein and I. Alexeff, eds., “High-power microwave sources”, Artech House, Boston, London (1987).

    Google Scholar 

  2. C.J. Edgcombe, ed., “Gyrotron oscillators—their principles and practice”, Taylor & Francis, London (1993).

    Google Scholar 

  3. M.V. Kartikeyan, E. Borie and M.K.A. Thumm, “Gyrotrons—High power microwave and millimeter wave technology”, Springer, Berlin (2004).

    Google Scholar 

  4. G. Nusinovich, “Introduction to the physics of gyrotrons”, The Johns Hopkins University Press, Baltimore and London (2004).

    Google Scholar 

  5. J. Benford, J. Swegle and E. Schamiloglu, “High-power microwave sources”, 2nd Ed., Taylor & Francis, New York, London (2007).

    Google Scholar 

  6. A.L. Goldenberg, G.G. Denisov, V.E. Zapevalov, A.G. Litvak, V.A. Flyagin, “Cyclotron resonance masers: state of the art”, Radiophys. and Quantum Electronics, 39, 423–446 (1996).

    Article  Google Scholar 

  7. S.H. Gold and G.S. Nusinovich, “Review of high-power microwave source research”, Rev. Scientific Instruments, 68, 3945–3974 (1997).

    Article  Google Scholar 

  8. V.L. Granatstein, B. Levush, B.G. Danly, R.K. Parker, “A quarter century of gyrotron research and development”, IEEE Trans. on Plasma Science, 25, 1322–1335 (1997).

    Article  Google Scholar 

  9. M.I. Petelin, “One century of cyclotron radiation”, IEEE Trans. on Plasma Science, 27, 294–302 (1999).

    Article  Google Scholar 

  10. K.L. Felch, B.G. Danly, H.R. Jory, K.E. Kreischer, W. Lawson, B. Levush, R.J. Temkin, “Characteristics and applications of fast-wave gyrodevices”, Proc. of the IEEE, 87, 752–781 (1999).

    Article  Google Scholar 

  11. M. Thumm, “Free-electron masers vs. gyrotrons: prospects for high-power sources at millimeter and submillimeter wavelengths”, Nuclear Instruments and Methods in Phys. Res., A482, 186–194 (2002).

    Article  Google Scholar 

  12. K.R. Chu, “The electron cyclotron maser”, Rev. Mod. Phys., 76, 489–540 (2004).

    Article  Google Scholar 

  13. A.V. Gaponov-Grekhov and V.L. Granatstein, eds., “Applications of high-power microwaves”, Artech House, Boston, London (1994).

    Google Scholar 

  14. M. Thumm, “Applications of high-power microwave devices”, in “Generation and Application of High Power Microwaves”. R.A. Cairns and A.D.R. Phelps, eds., Institute of Physics Publishing, Bristol and Philadelphia, 305–323 (1997).

  15. M. Thumm, “Novel applications of millimeter and submillimeter wave gyro-devices”, Int. J. of Infrared and Millimeter Waves, 22, 377–386 (2001).

    Article  Google Scholar 

  16. K. Felch, H. Huey and H. Jory, “Gyrotrons for ECH application”, J. Fusion Energy, 9, 59–75 (1990).

    Article  Google Scholar 

  17. M. Thumm, “Progress in gyrotron development”, Fusion Engineering and Design, 66–68, 69–90 (2002).

    Google Scholar 

  18. M. Thumm, “High power gyro-devices for plasma heating and other applications”, Int. J. of Infrared and Millimeter Waves, 26, 483–503 (2005).

    Article  Google Scholar 

  19. Thumm, M., “State-of-the-Art of High Power Gyro-Devices and Free Electron Masers”, Update 2009, KIT Scientific Report 7540, Karlsruhe Institute of Technology (2010).

  20. T.C. Luce, “Application of electron cyclotron current drive on ITER”, IEEE Trans. on Plasma Science, 30, 734–754 (2002).

    Article  Google Scholar 

  21. H. Zohm and M. Thumm, On the use of step-tuneable gyrotrons in ITER. Journal of Physics: Conference Series, 25, 274–282 (2005).

    Article  Google Scholar 

  22. V. Erckmann, P. Brand, H. Braune, G. Dammertz, G. Gantenbein, W. Kasparek, H.P. Laqua, H. Maassberg, N.B. Marushchenko, G. Michel, M. Thumm, Y. Turkin, M. Weissgerber, A. Weller, W7-X ECRH Team at IPP Greifswald, W7-X ECRH Team at FZK Karlsruhe and W7-X ECRH Team at IPF Stuttgart, “Electron cyclotron heating for W7-X: physics and technology”, Fusion Science and Technology, 52, 291–312 (2007).

    Google Scholar 

  23. M.K. Thumm and W. Kasparek, “Passive high-power microwave components”, IEEE Trans. on Plasma Science, 30, 755–786 (2002).

    Article  Google Scholar 

  24. R. Heidinger, G. Dammertz, A. Meier, M.K. Thumm, “CVD diamond windows studied with low- and high-power millimeter waves”, IEEE Trans. on Plasma Science, 30, 800–807 (2002).

    Article  Google Scholar 

  25. C. Darbos, R. Magne, S. Alberti, A. Barbuti, G. Berger-By, F. Bouquey, P. Cara, J. Clary, L. Courois, R. Dumont, E. Giguet, D. Gil, G. Giruzzi, M. Jung, Y. LeGoff, F. Legrand, M. Lennholm, C. Liévin, Y. Peysson, D. Roux, M. Thumm, T. Wagner, M.Q. Tran, X. Zou, “The 118 GHz ECRH experiment on Tore Supra”, Fusion Engineering and Design, 56–57, 605–609 (2001).

    Article  Google Scholar 

  26. G. Dammertz, S. Alberti, A. Arnold, E. Borie, V. Erckmann, G. Gantenbein, E. Giguet, R. Heidinger, J.P. Hogge, S. Illy, W. Kasparek, K. Koppenburg, M. Kuntze, H.P. Laqua, G. LeCloarec, Y. LeGoff, W. Leonhardt, C. Liévin, R. Magne, G. Michel, G. Müller, G. Neffe, B. Piosczyk, M. Schmid, K. Schwörer, M.K. Thumm, M.P. Tran, “Development of a 140-GHz 1-MW continuous wave gyrotron for the W7-X stellarator”, IEEE Trans. on Plasma Science, 30, 808–818 (2002).

    Article  Google Scholar 

  27. G. Dammertz, S. Alberti, D. Bariou, P. Brand, H. Braune, V. Erckmann, G. Gantenbein, E. Giguet, R. Heidinger, J.P. Hogge, W. Kasparek, H.P. Laqua, C. Liévin, W. Leonhardt, G. Michel, G. Müller, G. Neffe, B. Piosczyk, M. Schmid, M. Thumm, “140 GHz high-power gyrotron development for the stellarator W7-X”, Fusion Engineering and Design, 74, 217–221 (2005).

    Article  Google Scholar 

  28. M. Thumm, A. Alberti, A. Arnold, P. Brand, H. Braune, G. Dammertz, V. Erckmann, G. Gantenbein, E. Giguet, R. Heidinger, H.P. Hogge, S. Illy, W. Kasparek, H.P. Laqua, F. Legrand, W. Leonhardt, C. Liévin, G. Michel, G. Neffe, B. Piosczyk, M. Schmid, K. Schwörer, M.Q. Tran, “EU megawatt-class 140-GHz gyrotron”, IEEE Trans. on Plasma Science, 35, 143–153 (2007).

    Article  Google Scholar 

  29. A. Kasugai, K. Sakamoto, K. Takahashi, K. Kajiwara, H. Shoyama, Yu. Ikeda, M. Tsuneoka, Y. Ikeda, T. Fujii, T. Kariya, Y. Mitsunaka, T. Imai, “1 MW and long pulse operation of Gaussian beam output gyrotron with CVD diamond window for fusion devices”, Fusion and Engineering and Design, 53, 399–406 (2001).

    Article  Google Scholar 

  30. K. Sakamoto, A. Kasugai, Y. Ikeda, K. Hayashi, K. Takahashi, S. Moriyama, M. Seki, T. Kariya, Y. Mitsunaka, T. Fujii, T. Imai, “Development of 170 and 110 GHz gyrotrons for fusion devices”, Nuclear Fusion, 43, 729–737 (2003).

    Article  Google Scholar 

  31. K. Sakamoto, A. Kasugai, K. Takahashi, R. Minami, N. Kobayashi, K. Kajiwara, “Achievement of robust high-efficiency 1 MW oscillation in the hard-self-excitation region by a 170 GHz continuous-wave gyrotron”, Nature Physics, 3, 411–414 (2007).

    Article  Google Scholar 

  32. K. Sakamoto, A. Kasugai, K. Kajiwara, K. Takahashi, Y. Oda, K. Hayashi, N. Kobayashi, “Progress of high power 170 GHz gyrotron in JAEA”, Nuclear Fusion, 49, 095019 (6 pp) (2009).

    Google Scholar 

  33. A.L. Goldenberg and A.G. Litvak, “Recent progress of high-power millimeter wave-length gyrodevices”, Phys. Plasmas, 2, 2562–2572 (1995).

    Article  Google Scholar 

  34. V.E. Zapevalov, G.G. Denisov, V.A. Flyagin, A.Sh. Fix, A.N. Kuftin, A.G. Litvak, M.V. Agapova, V.N. Iljin, V.A. Khmara, V.E. Myasnikov, V.O. Nichiporenko, L.G. Popov, S.V. Usachev, V.V. Alikaev, V.I. Iljin, “Development of 170 GHz / 1 MW Russian gyrotron for ITER”, Fusion Engineering and Design, 53, 377–385 (2001).

    Article  Google Scholar 

  35. G.G. Denisov, V.E. Zapevalov, A.G. Litvak, V.E. Myasnikov, “Megawatt gyrotrons for ECR heating and current-drive systems in controlled-fusion facilities”, Radiophysics and Quantum Electronics, 46, 757–768 (2003).

    Article  Google Scholar 

  36. G.G. Denisov, A.G. Litvak, V.E. Myasnikov, E.M. Tai, V.E. Zapevalov, “Development in Russia of high-power gyrotrons for fusion”, Nuclear Fusion, 48, 054007 (5 pp) (2008).

  37. K. Felch, H. Huey and H. Jory, “Gyrotrons for ECH application”, J. Fusion Energy, 9, 59–75 (1990).

    Article  Google Scholar 

  38. K. Felch, M. Blank, P. Borchard, T.S. Chu, J. Feinstein, H.R. Jory, J.A. Lorbeck, C.M. Loring, Y.M. Mizuhara, J.M. Nielson, R. Schumacher, T.J. Temkin, “Long-pulse and CW tests of a 110 GHz gyrotron with an internal, quasi-optical converter”, IEEE Trans. on Plasma Science, 24, 558–569 (1996).

    Article  Google Scholar 

  39. K. Felch, M. Blank, P. Borchard, P. Cahalan, S. Cauffman, T.S. Chu, H. Jory, “Recent ITER-relevant gyrotron tests”, Journal of Physics: Conference Series, 25, 13–23 (2005).

    Article  Google Scholar 

  40. G. Dammertz, S. Alberti, D. Fasel, E. Giguet, K. Koppenburg, M. Kuntze, F. Legrand, W. Leonhardt, C. Lievin, G. Müller, G. Neffe, B. Piosczyk, M. Schmid, A. Sterk, M. Thumm, M.Q. Tran, A.G.A. Verhoeven, “Power modulation capabilities of the 140 GHz/1 MW gyrotron for the stellarator Wendelstein 7-X,” Fusion Engineering and Design, 66–68, 497–502 (2003).

    Article  Google Scholar 

  41. M. Schmid, S. Illy, G. Dammertz, V. Erckmann, M. Thumm, “Transverse field collector sweep system for high power CW gyrotrons”, Fusion Engineering and Design, 82, 744–750 (2007).

    Article  Google Scholar 

  42. M. Thumm, A. Arnold, E. Borie, O. Braz, G. Dammertz, O. Dumbrajs, K. Koppenburg, M. Kuntze, G. Michel, B. Piosczyk, “Frequency step-tunable (114–170 GHz) megawatt gyrotrons for plasma physics applications,” Fusion Engineering and Design, 53, 407–421 (2001).

    Article  Google Scholar 

  43. J.P. Hogge, T.P. Goodman, S. Alberti, F. Albajar, K.A. Avramides, P. Benin, S. Bethuys, W. Bin, T. Bonicelli, A. Bruschi, S. Cirant, E. Droz, O. Dumbrajs, D. Fasel, F. Gandini, G. Gantenbein, S. Illy, S. Jawla, J. Jin, S. Kern, P. Lavanchy, C. Liévin, B. Marlètaz, P. Marmillod, A. Perez, B. Piosczyk, I. Pagonakis, L. Porte, T. Rzesnicki, U. Siravo, M. Thumm, M.Q. Tran, “First experimental results from the European Union 2-MW coaxial cavity ITER gyrotron prototype,” Fusion Science and Technology, 55, 204–212 (2009).

    Google Scholar 

  44. T. Rzesnicki, B. Piosczyk, S. Kern, S. Illy, J. Jin, A. Samartsev, A. Schlaich, M. Thumm, “2.2-MW record power of the 170 GHz European prototype coaxial-cavity gyrotron for ITER”, IEEE Trans. on Plasma Science, 38, 1141–1149 (2010).

    Article  Google Scholar 

  45. J. Jin, M. Thumm, B. Piosczyk, S. Kern, J. Flamm, T. Rzesnicki, “Novel numerical method for the analysis and synthesis of the fields in highly oversized waveguide mode converters,” IEEE Trans. on Microwave Theory and Techniques, 57, 1661–1668 (2009).

    Article  Google Scholar 

  46. K. Koppenburg, G. Dammertz, M. Kuntze, B. Piosczyk, M. Thumm, “Fast frequency-step-tunable high-power gyrotron with hybrid-magnet-system”, IEEE Trans. on Electron Devices, 48, 101–107 (2001).

    Article  Google Scholar 

  47. G. Li, J. Jin, T. Rzesnicki, S. Kern, M. Thumm, “Analysis of a quasi-optical launcher toward a step-tunable 2-MW coaxial-cavity gyrotron,” IEEE Trans. on Plasma Science, 38, 1361–1368 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank K. Felch (CPI), K. Sakamoto (JAEA) and G. Denisov (IAP) for providing useful information.

The excellent cooperation with the author’s colleagues M. Beringer, E. Borie, P. Brand, H. Braune, G. Dammertz, V. Erckmann, J. Flamm, G. Gantenbein, R. Heidinger, S. Illy, J. Jin, W. Kasparek, S. Kern, H.P. Laqua, C. Lechte, F. Leuterer, A. Meier, G. Michel, B. Piosczyk, B. Plaum, T. Rzesnicki, A. Samartsev, A. Schlaich, M. Schmid, D. Wagner and H. Zohm is gratefully acknowledged.

The author also would like to thank the technical staffs at KIT, IPF and IPP for their excellent contributions in solving numerous technological problems. He is especially indebted to the technical personnel running the gyrotron test facilities at KIT and IPP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred K. A. Thumm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thumm, M.K.A. Recent Developments on High-Power Gyrotrons—Introduction to This Special Issue. J Infrared Milli Terahz Waves 32, 241–252 (2011). https://doi.org/10.1007/s10762-010-9754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-010-9754-5

Keywords

Navigation