Skip to main content
Log in

The Multiple Gyrotron System on the DIII-D Tokamak

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The electron cyclotron heating and current drive complex on the DIII-D tokamak presently comprises six gyrotrons injecting rf power from the low field side at 110 GHz, the 2f ce resonance at the center of the vacuum chamber. Typical injected rf power is 600–650 kW per gyrotron. The launched rf can be directed over ±20° toroidally to create both co- and counter-current drive and scanned over 40° poloidally to permit the injected rf beams to intersect, and be absorbed at, the second harmonic resonance anywhere in the tokamak upper half plane. The elliptical polarization is controlled so that the desired extraordinary or ordinary modes are excited for any injection geometry. The maximum injected energy on a single plasma shot has been 16.6 MJ for six gyrotrons injecting a total of 3.4 MW for 5 seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Gycom, Nizhny Novgorod, Russian Federation.

  2. Communications and Power Industries, Palo Alto, California, USA.

References

  1. R. Prater and A.J. Lieber, “Heating effectiveness in the electron cyclotron heating experiments in the Doublet III tokamak,” Proc. 5th Int. Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating, Eds. Ronald Prater and John Lohr, General Atomics Report GA-A18294 (1985).

  2. R.A. James, et al., Phys. Rev. A 45, 8783 (1992).

    Article  Google Scholar 

  3. M. Bornatici, et al., Nucl. Fusion 23, 1153 (1983).

    Article  Google Scholar 

  4. R. Prater, et al., Plasma Phys. Control. Fusion 35 (1993).

  5. John Lohr, et al., Phys. Rev. Lett. 60, 2630 (1988).

  6. John Lohr, et al., “Recent electron cyclotron heating experiments with low field launch of the ordinary mode on the DIII-D tokamak,” Proc. 7th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Hefei, China (IAEA, Vienna 1990) p. 157.

  7. R.W. Callis, et al, “Initial results from the multi-megawatt 110 GHz ECH system for the DIII-D tokamak,” Proc. 12th Topical Conf. on Radio Frequency Power in Plasmas (1997) p. 191.

  8. G.G. Denisov, et al., Int. J. Electronics 72, 1079 (1992).

    Article  Google Scholar 

  9. Kevin Felch, et al., IEEE Trans. Plasma Sci. 24, 558 (1996).

  10. Y. Gorelov, et al., “Infrared monitoring of 110 GHz gyrotron windows at DIII-D,” Proc. 12th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating, Ed. Gerardo Giruzzi, World Scientific, Singapore (2002) p. 461.

  11. J. Lohr, et al., “The 110 GHz gyrotron system on DIII-D: Gyrotron tests and Physics results,” Proc. Strong Microwaves in Plasmas (2000) p. 46.

  12. G.G. Denisov, et al., “Phase corrector synthesis and field measurements for gyrotron quasi-optical beams,” Proc. 20th Int. Conf. on Infrared and Millimeter Waves (1995) p. 483.

  13. J.R. Brandon, et al., Fusion Eng. Design 53, 553 (2001).

    Article  Google Scholar 

  14. C.B. Baxi, et al., Fusion Eng. Design 82, 731 (2007).

    Article  Google Scholar 

  15. M. Joung, “Commissioning and operation of 110 GHz ECH system in KSTAR,” accepted for publication in Proc. 16th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating, Ed. Jiangang Li, World Scientific, Singapore (2010).

  16. Hiroaki Shoyama, et al., Jpn J. Appl. Phys. 40, 906 (2001).

  17. Kevin Felch, et al., Nucl. Fusion 48, 1 (2008).

  18. John Lohr, et al., Fusion Sci. Technol. 48, 1226 (2005).

  19. F. Leuterer, et al., “Planning, construction and operation experience of the ASDEX-Upgrade ECRH system,” Proc. 15th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating, ed. John Lohr, World Scientific, Singapore (2009).

  20. J.L. Doane, “Propagation and mode coupling in corrugated and smooth-wall circular waveguides,” Ed. K.J. Button, Academic Press, Infrared and Millimeter Waves 13, 123-170 (1985).

  21. J.L. Doane, “Compact HE1,1 to surface wave convertors for high power waveguide dummy loads,” Int. J. Infrared Millimeter Waves 14, 363 (1993).

    Article  Google Scholar 

  22. L.L. Lao, et.al., “MHD equilibrium reconstruction in the DIII-D tokamak,” Fusion Sci. Technol. 48, 968 (2005).

    Google Scholar 

  23. K. Matsuda, “Ray tracing study of the electron cyclotron current drive in DIII-D using 60 GHz,”: IEEE Trans. Plasma Sci. 17, 6 (1989).

    Article  Google Scholar 

  24. S.G.E. Pronko and T.E. Harris, “A new crowbar system for the protection of high power gridded tubes and microwave devices,” General Atomics Report GA-A23652, http://web.gat.com/pubs-ext/MISCONF00/A23652.pdf

  25. Gifford-McMahon pulse tube cryocooler from Cryomech, 113 Falso Dr., Syracuse NY, USA.

  26. Takahashi Shimozuma, et al., J. Plasma Fusion Res. 81, 191 (2005).

  27. A.V. Chirkov, et al., Opt. Comm. 115, 449 (1995).

    Article  Google Scholar 

  28. J.P. Anderson, et al., “Phase retrieval of gyrotron beams based on irradiance measurements,” IEEE Trans. Microwave Theory Techniques 50, 1526 (2002).

    Article  Google Scholar 

  29. K. Ohkubo, et al., J. Infrared Millimeter and Terrahertz Waves 18, 23 (2007).

    Article  Google Scholar 

  30. Jeffrey Neilson, “Optimization of Quasi-Optical Launchers for Multi-Frequency Gyrotrons,” IEEE Trans. Plasma Sci. 35, 6 (2007).

    Google Scholar 

  31. Michael P. Perkins, et al.,” A High Efficiency Launcher and Mirror System for Use in a 110 GHZ TE22,6 Mode Gyrotron,” Int. J. Infrared and Millimeter Waves 28, 207 (2007).

    Article  Google Scholar 

  32. K. Kajiwara, et al., Proc. of 20th IEEE/NPSS Symposium on Fusion Engineering, San Diego, California, Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey (2003).

  33. D. Ponce, et al., “The DIII-D Multiple Gyrotron Control System,” Proc. of 19th IEEE/NPSS Symposium on Fusion Engineering, Atlantic City, New Jersey, Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey (2002) p. 184.

  34. K. Sakamoto, et al., “Development of high power long pulse ITER gyrotrons,” Proc. 16th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating, Ed. Jiangang Li, World Scientific, Singapore (2010).

  35. J.L. Doane and C.P. Moeller, “HE1,1 bends and gaps in a circular corrugated waveguide,” Int. J. Electronics 77, 489 (1994).

    Article  Google Scholar 

  36. V.I. Belousov, et al., “Improved multi-function miter bends for corrugated waveguides of high power millimeter-wave transmission lines,” Proc. Int. Workshop Strong Microwaves in Plasmas,” Ed. A.G. Litvak, Russian Academy of Sciences, Nizhny Novgorod 1, 264 (2003).

  37. Timothy C. Luce, IEEE Trans. on Plasma Sci. 30, 734 (2002).

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the U.S. Department of Energy under Cooperative Agreement DE-FC02-04ER54698.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Lohr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohr, J., Cengher, M., Doane, J.L. et al. The Multiple Gyrotron System on the DIII-D Tokamak. J Infrared Milli Terahz Waves 32, 253–273 (2011). https://doi.org/10.1007/s10762-010-9706-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-010-9706-0

Keywords

Navigation