Skip to main content
Log in

Temperature-Dependent Terahertz Spectroscopy of Liquid n-alkanes

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We describe measurements of the terahertz dielectric properties of normal alkanes. We study all of the liquid alkanes from pentane (C5) to hexadecane (C16) over the temperature range from 20–80°C, and obtain the absorption coefficients and refractive indices in the spectral range from 0.1 to 2.5 THz (3–83 cm−1). The mean molecular polarizability is found to vary linearly with chain length at all temperatures, indicating that an additive model for polarizability, with distinct contributions from the methylene groups and the methyl end groups, provides an accurate description. The absorption coefficients of these non-polar liquids, arising from transient induced dipoles, are essentially featureless in this spectral range, with an almost linear dependence on frequency and negligible temperature dependence. These results provide a baseline for far infrared spectroscopic studies of inter-molecular interactions in non-polar hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. P. Srivastava, J. Handoo, K. M. Agrawal, and G. C. Joshi, J. Phys. Chem. Solids 54, 639 (1993).

    Article  Google Scholar 

  2. E. B. Sirota and A. B. Herhold, Science 283, 529 (1999).

    Article  Google Scholar 

  3. J. P. Laib, D. V. Nickel, and D. M. Mittleman, Chem. Phys. Lett. 493, 279 (2010).

    Article  Google Scholar 

  4. X. Z. Wu, B. M. Ocko, E. B. Sirota, S. K. Sinha, M. Deutsch, B. H. Cao, and M. W. Kim, Science 261, 1018 (1993).

    Article  Google Scholar 

  5. E. B. Sirota, Langmuir 14, 3133 (1998).

    Article  Google Scholar 

  6. R. G. Snyder, H. L. Strauss, R. Alamo, and L. Mandelkern, J. Chem. Phys. 100, 5422 (1993).

    Article  Google Scholar 

  7. P. T. T. Wong, Ann. Rev. Biophys. Bioeng. 13, 1 (1984).

    Article  Google Scholar 

  8. W. Dollhopf, H. P. Grossmann, and U. Leute, Colloid & Polymer Sci. 259, 267 (1981).

    Article  Google Scholar 

  9. A.-J. Briard, M. Bouroukba, D. Petitjean, and M. Dirand, J. Chem. Eng. Data 48, 1508 (2003).

    Article  Google Scholar 

  10. E. B. Sirota, J. H. E. King, D. M. Singer, and H. H. Shao, J. Chem. Phys. 98, 5809 (1993).

    Article  Google Scholar 

  11. L. Brambilla and G. Zerbi, Macromol. 38, 3327 (2005).

    Article  Google Scholar 

  12. M. Yamaguchi, S. V. Serafin, T. H. Morton, and E. L. Chronister, J. Phys. Chem. B 107, 2815 (2003).

    Article  Google Scholar 

  13. S. K. Garg, J. E. Bertie, H. Kilp, and C. P. Smyth, J. Chem. Phys. 49, 2551 (1968).

    Article  Google Scholar 

  14. U. Stumper, Adv. Molec. Relaxation Processes 7, 189 (1975).

    Article  Google Scholar 

  15. A. S. Gilbert, A. M. North, T. G. Parker, and R. A. Pethrick, Spectrochim. Acta A 32, 931 (1976).

    Article  Google Scholar 

  16. W. G. Scaife, J. K. Vij, G. Evans, and M. Evans, J. Phys. D 15, 1279 (1982).

    Article  Google Scholar 

  17. J. K. Vij, Il Nuovo Cimento 2, 751 (1983).

    Article  Google Scholar 

  18. W. Richter and D. Schiel, Infrared Phys. 24, 227 (1984).

    Article  Google Scholar 

  19. D. Mittleman, Sensing with Terahertz Radiation (Springer-Verlag, Heidelberg, 2002).

    Google Scholar 

  20. J. E. Pedersen and S. R. Keiding, IEEE J. Quant. Elec. 28, 2518 (1992).

    Article  Google Scholar 

  21. T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamoto, M. Tani, and M. Hangyo, Appl. Phys. Lett. 87, 034105 (2005).

    Article  Google Scholar 

  22. M. Naftaly, A. P. Foulds, R. E. Miles, and A. G. Davies, Int. J. Infrared & Millimeter Waves 26, 55 (2005).

    Article  Google Scholar 

  23. F. M. Al-Douseri, Y. Chen, and X.-C. Zhang, Int. J. Infrared & Millimeter Waves 27, 481 (2006).

    Article  Google Scholar 

  24. J. Boyd, A. Briskman, V. Colvin, and D. Mittleman, Phys. Rev. Lett. 87, 147401 (2001).

    Article  Google Scholar 

  25. J. E. Boyd, A. Briskman, C. Sayes, D. Mittleman, and V. Colvin, J. Phys. Chem. 106, 6346 (2002).

    Google Scholar 

  26. S. Gorenflo, U. Tauer, I. Hinkov, A. Lambrecht, R. Buchner, and H. Helm, Chem. Phys. Lett. 421, 494 (2006).

    Article  Google Scholar 

  27. W. G. Scaife and C. G. Lyons, Ber. Bunsenges. Phys. Chem. 94, 758 (1990).

    Google Scholar 

  28. K. D. Bonin and M. A. Kadar-Kallen, Int. J. Mod. Phys. B 8, 3313 (1994).

    Article  Google Scholar 

  29. C. L. Yaws, Thermophysical properties of chemicals and hydrocarbons (William Andrew, Norwich NY, 2008).

    Google Scholar 

  30. F. Jiménez-Cruz and G. C. Laredo, Fuel 83, 2183 (2004).

    Article  Google Scholar 

  31. N. A. Hermiz, J. B. Hasted, and C. Rosenberg, J. Chem. Soc. Faraday Trans. 2, 147 (1982).

    Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the R. A. Welch Foundation, by the University of Alberta through the Alberta Innovates Technology Futures program, and by Shell International Exploration and Production, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Mittleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laib, J.P., Mittleman, D.M. Temperature-Dependent Terahertz Spectroscopy of Liquid n-alkanes. J Infrared Milli Terahz Waves 31, 1015–1021 (2010). https://doi.org/10.1007/s10762-010-9678-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-010-9678-0

Keywords

Navigation