Skip to main content
Log in

Numerical Simulation of MIG for 42 GHz, 200 kW Gyrotron

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A triode type magnetron injection gun (MIG) of a 42 GHz, 200 kW gyrotron for an Indian TOKAMAK system is designed by using the commercially available code EGUN. The operating voltages of the modulating anode and the accelerating anode are 29 kV and 65 kV respectively. The operating mode of the gyrotron is TE03 and it is operated in fundamental harmonic. The simulated results of MIG obtained with the EGUN code are validated with another trajectory code TRAK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig.3
Fig. 4

Similar content being viewed by others

References

  1. C. J. Edgcombe (ed.), Gyrotron Oscillators: Their Principles and Practice (Taylor & Francis, London, 1993).

    Google Scholar 

  2. M. V. Kartikeyan, E. Borie, and M. Thumm, Gyrotrons High-Power Microwave and Millimeter Wave Technology (Springer, Germany, 2004).

    Google Scholar 

  3. G. S. Nusinovich, Introduction to the Physics of Gyrotrons (Johns Hopkins University Press, Maryland, 2004).

    Google Scholar 

  4. A. L. Goldenberg and M. I. Petelin, “The Formation of Helical Electron Beams in an Adiabatic Gun,” Izv. VUzov. Radiofizika 16, 141–149 (1973).

    Google Scholar 

  5. P. V. Krivosheev, V. K. Lygin, V. N. Manuilov, and Tsimring ShE, “Numerical Simulation Models of Forming Systems of Intense Gyrotron Helical Electron Beams,” Int. J. Infrared Millim. Waves 22, 1119–1146 (2001).

    Article  Google Scholar 

  6. Sh. E. Tsimring, “Gyrotron Electron Beams: Velocity and Energy Spread and Beam Instabilities,” Int. J. Infrared Millim. Waves 22, 1433–1468 (2001).

    Article  Google Scholar 

  7. J. M. Baird and W. Lawson, “Magnetron injection gun (MIG) design for gyrotron applications,” Int. J. Electronics 61, 953–967 (1986).

    Article  Google Scholar 

  8. W. Lawson, “MIG Scaling,” IEEE Trans. Plasma Science 16 (2), 290–295 (1988).

    Article  Google Scholar 

  9. U. Singh, A. Bera, R. R. Rao and A. K. Sinha, “Synthesized Parameters of MIG for 200 kW, 42 GHz Gyrotron” Int. J. Infrared Millim. Waves issue no. 1886–6906 [online] (2009).

  10. W. B. Herrmannsfeldt, EGUN-an electron optics and gun design program, Stanford Linear Accelerator Center Stanford University Report SLAC-226.

  11. TRAK 6.0, Finite-element Charged-particle Optics, Albuquerque, New Mexico 87192 USA.

  12. A. Bera, Udaybir Singh, R.R. Rao and A.K. Sinha, “Design of MIG for 42 GHz, 200 kW Gyrotron” IVEC-2008, Monterey, USA.

  13. V. K. Lygin, B. Piosczyk, G. Dammertz, A. N. Kuftin, and V. E. Zapevalov, “A diode electron gun for a 1 MW 140 GHz gyrotron,” Int. J. Electronics 82 (2), 193–201 (1997).

    Article  Google Scholar 

Download references

Acknowledgement

Authors are grateful to the Director, CEERI, Pilani, for permission to publish this paper. Thanks are due to Dr SN Joshi, Prof BN Basu Dr V Srivastava, Dr RS Raju and team members for their continuous support and encouragement. Thanks are also due to DST for funding this project. Authors are also grateful to Prof M Thumm and Dr B Piosczyk, FZK, Germany for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udaybir Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, U., Bera, A., Kumar, N. et al. Numerical Simulation of MIG for 42 GHz, 200 kW Gyrotron. J Infrared Milli Terahz Waves 31, 708–713 (2010). https://doi.org/10.1007/s10762-010-9624-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-010-9624-1

Keywords

Navigation