Skip to main content
Log in

Trajectory Analysis in a Collector with Multistage Energy Recovery for a DEMO Prototype Gyrotron. Part I. Idealized Magnetic Field Distribution

  • PHYSICAL ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

This paper presents the results of simulation of the collector of a prototype gyrotron designed for the DEMO project. Trajectory analysis in a collector with four-stage recovery of the residual beam energy based on the method of spatial separation of electrons in crossed azimuthal magnetic and axial electric fields was carried out. In this part of the research, the azimuthal magnetic field was formed using a conductor located on the axis of the device. The study was carried out for a spent electron beam with a particle velocity and coordinate distribution close to those obtained in experiments with high-power gyrotrons. As a result of optimizing the geometry and potentials of the collector sections, an overall efficiency of the gyrotron higher than 80% was achieved, which is close to the maximum efficiency with ideal separation of electron beam fractions with different energies. The data obtained will be used to design a toroidal solenoid for creating an azimuthal magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. G. Litvak, G. G. Denisov, V. E. Myasnikov, E. M. Tai, E. A. Azizov, and V. I. Ilin, J. Infrared, Millimeter, Terahertz Waves 32 (3), 337 (2011). https://doi.org/10.1007/s10762-010-9743-8

    Article  Google Scholar 

  2. M. Thumm, J. Infrared, Millimeter, Terahertz Waves 41 (1), 1 (2020). https://doi.org/10.1007/s10762-019-00631-y

    Article  Google Scholar 

  3. C. Darbos, F. Albajar, T. Bonicelli, G. Carannante, M. Cavinato, F. Cismondi, G. Denisov, D. Farina, M. Gagliardi, F. Gandini, Th. Gassmann, T. Goodman, G. Hanson, M. A. Henderson, K. Kajiwara, et al., J. Infrared, Millimeter, Terahertz Waves 37 (1), 4 (2016). https://doi.org/10.1007/s10762-015-0211-3

    Article  Google Scholar 

  4. J. Jelonnek, G. Aiello, S. Alberti, K. Avramidis, F.  Braunmueller, A. Bruschi, J. Chelis, J. Franck, T. Franke, G. Gantenbein, S. Garavaglia, G. Granucci, G. Grossetti, S. Illy, Z. C. Ioannidis, et al., Fusion Eng. Des. 123, 241 (2017). https://doi.org/10.1016/j.fusengdes.2017.01.047

    Article  Google Scholar 

  5. V. N. Manuilov, M. V. Morozkin, O. I. Luksha, and M. Yu. Glyavin, Infrared Phys. Technol. 91, 46 (2018). https://doi.org/10.1016/j.infrared.2018.03.024

    Article  ADS  Google Scholar 

  6. H. G. Kosmahl, Proc. IEEE 70 (11), 1325 (1982). https://doi.org/10.1109/PROC.1982.12481

    Article  ADS  Google Scholar 

  7. A. L. Goldenberg, V. N. Manuilov, M. A. Moiseev, and N. A. Zavolsky, Int. J. Infrared Millimeter Waves 18 (1), 43 (1997). https://doi.org/10.1007/BF02677896

    Article  ADS  Google Scholar 

  8. A. Singh, S. Rajapatirana, Y. Men, V. L. Granatstein, R. L. Ives, and A. J. Antolak, IEEE Trans. Plasma Sci. 27 (2), 490 (1999).

    Article  ADS  Google Scholar 

  9. G. Ling, B. Piosczyk, and M. K. Thumm, IEEE Trans. Plasma Sci. 28 (3), 606 (2000).

    Article  ADS  Google Scholar 

  10. M. Yu. Glyavin, M. V. Morozkin, and M. I. Petelin, Radiophys. Quantum Electron. 49 (10), 811 (2006). https://doi.org/10.1007/s11141-006-0116-z

    Article  ADS  Google Scholar 

  11. I. Gr. Pagonakis, J.-P. Hogge, S. Alberti, K. A. Avramides, and J. L. Vomvoridis, IEEE Trans. Plasma Sci. 36 (2), 469 (2008).

    Article  Google Scholar 

  12. O. I. Louksha and P. A. Trofimov, Tech. Phys. Lett. 41 (9), 884 (2015). https://doi.org/10.1134/S1063785015090230

    Article  ADS  Google Scholar 

  13. C. Wu, I. G. Pagonakis, K. A. Avramidis, G. Gantenbein, S. Illy, M. Thumm, and J. Jelonnek, Phys. Plasmas 25 (3), 033108 (2018).

    Article  ADS  Google Scholar 

  14. O. Louksha, B. Piosczyk, G. Sominski, M. Thumm, and D. Samsonov, IEEE Trans. Plasma Sci. 34 (3), 502 (2006).

    Article  ADS  Google Scholar 

  15. D. V. Kas’yanenko, O. I. Louksha, B. Piosczyk, G. G. Sominsky, and M. Thumm, Radiophys. Quantum Electron. 47 (5–6), 414 (2004). https://doi.org/10.1023/B:RAQE.0000046315.10190.1c

    Article  ADS  Google Scholar 

  16. O. I. Louksha, D. B. Samsonov, G. G. Sominskii, and A. A. Tsapov, Tech. Phys. 57 (6), 835 (2012). https://doi.org/10.1134/S1063784212060187

    Article  Google Scholar 

  17. D. V. Borzenkov and O. I. Luksha, Tech. Phys. 42 (9), 1071 (1997). https://doi.org/10.1134/1.1258768

    Article  Google Scholar 

  18. O. I. Louksha, and P. A. Trofimov, Tech. Phys. 64 (12), 1889 (2019). https://doi.org/10.1134/S1063784219120156

    Article  Google Scholar 

  19. https://www.3ds.com/products-services/simulia/ products/cststudio-suite/.

  20. M. Glyavin, V. Manuilov, and M. Morozkin, Proc. 43rd Int. Conf. Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2018) (September 9–14, 2018, Nagoya, Japan), p. 1308.

  21. G. G. Denisov, M. Yu. Glyavin, A. P. Fokin, A. N. Kuftin, A. I. Tsvetkov, A. S. Sedov, E. A. Soluyanova, M. I. Bakulin, E. V. Sokolov, E. M. Tai, M. V. Morozkin, M. D. Proyavin and V. E. Zapevalov, Rev. Sci. Instrum. 89 (8), 084702 (2018). https://doi.org/10.1063/1.5040242

    Article  ADS  Google Scholar 

  22. N. P. Venediktov, M. Yu. Glyavin, A. L. Goldenberg, V. E. Zapevalov, A. N. Kuftin, M. A. Moiseev, and A. S. Postnikova, Tech. Phys. 45 (12), 1571 (2000). https://doi.org/10.1134/1.1333195

    Article  Google Scholar 

  23. O. I. Louksha and P. A. Trofimov, Proc. 18th Int. Vacuum Electronics Conf. (IVEC 2017) (London, UK, 2017), p. 1.

  24. K. Sakamoto, M. Tsuneoka, A. Kasugai, T. Imai, T. Kariya, K. Hayashi, and Y. Mitsunaka, Phys. Rev. Lett. 73 (26), 3532 (1994).

    Article  ADS  Google Scholar 

  25. N. P. Venediktov, M. Yu. Glyavin, V. E. Zapevalov, and A. N. Kuftin, Radiophys. Quantum Electron. 41 (5), 449 (1998). https://doi.org/10.1023/B:RAQE.0000046315.10190.1c

    Article  ADS  Google Scholar 

  26. M. V. Morozkin, M. Yu. Glyavin, G. G. Denisov, and A. G. Luchinin, Int. J. Infrared Millimeter Waves 29 (11), 1004 (2008). https://doi.org/10.1007/s10762-008-9408-z

    Article  ADS  Google Scholar 

  27. N. A. Zavolsky, V. E. Zapevalov, A. N. Kuftin, and A. S. Postnikov, Proc. 28th Int. Conf. “Microwave and Telecommunication Technology” (CriMiCo’2018) (September 9–15, 2018, Sevastopol, Russia), p. 1131. https://www.elibrary.ru/item.asp?id=36568598.

  28. B. Piosczyk, C. T. Iatrou, G. Dammertz, and M. Thumm, IEEE Trans. Plasma Sci. 24 (3), 579 (1996).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 16-12-10010. Some of the results were obtained using the computing resources of the supercomputer center of Peter the Great St. Petersburg Polytechnic University (http://www.scc.spbstu.ru). The development of the prototype gyrotron for the DEMO project was carried out within the framework of Russian Science Foundation project no. 19-79-30071 and all requirements for the electron-optical system are formulated in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Louksha.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louksha, O.I., Trofimov, P.A., Manuilov, V.N. et al. Trajectory Analysis in a Collector with Multistage Energy Recovery for a DEMO Prototype Gyrotron. Part I. Idealized Magnetic Field Distribution. Tech. Phys. 66, 118–123 (2021). https://doi.org/10.1134/S1063784221010138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221010138

Navigation