Skip to main content
Log in

Design and Simulation of an Ultra-Broadband Ku-BandGyro-TWT for Radar Applications

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

In this paper, the design of an ultra-broadband Ku-band gyro-TWT amplifier is presented in detail. The preliminary parameters of the interaction structure derived from the dispersion relationship and the linear theory of the gyro-TWT with distributed wall losses is optimized by the self-consistent nonlinear code. The performance of the designed gyro-TWT is simulated by the nonlinear code. The simulation results show that the gain and the bandwidth of the designed Ku-band gyro-TWT is about 36.5 dB and 2.1 GHz with 3 dB bandwidth (about 12.7%) respectively at the input power 19.0 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. E. Ferguson, G. Valier, and R. S. Symons, “Gyrotron-TWT operating characteristics”. IEEE Trans. Microwave. Theory Tech. MTT-29(8), 794–799 (1981).

    Article  ADS  Google Scholar 

  2. Q. S. Wang, D. B. McDermott, and N. C. Luhmann Jr., “Operation of a stable 200 kW second harmonic gyro-TWT amplifier”. IEEE Trans. Plasma Sci. 24(3), 700–706 (1996).

    Article  ADS  Google Scholar 

  3. K. C. Leou, D. B. McDermott, C. K. Chong, and N. C. Luhmann Jr., “Experimental investigation of a broadband dielectric-loaded gyro-TWT amplifier”. IEEE Trans. Electron Devices 43(6), 1016–1020 (1996).

    Article  ADS  Google Scholar 

  4. L. R. Barnett, K. R. Chu, J. M. Baird, V. L. Granatstein and A. T. Drobot, Gain, saturation, and bandwidth measurements of the NRL gyrotron traveling wave amplifier, in Proc. Tech. Dig. Int. Electron Devices Meeting, New York, pp. 164–167, 1979.

  5. K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang, and D. J. Dialetis, “Theory and experiment of ultra-high-gain gyrotron traveling wave amplifier”. IEEE Trans. Plasma. Sci. 27(2), 391–404 (1999).

    Article  ADS  Google Scholar 

  6. D. B. McDermott, H. Song, Y. Hirata, A. T. Lin, T. H. Chang, K. R. Chu, and N. C. Luhmann, Jr., 140 kW, 94 GHz heavily loaded TE01 gyro-TWT”, in Proc. 2nd Int. Vacuum Electronics Conf., Noordwijk, The Netherlands, pp. 143–144, Apr. 2001.

  7. G. S. Nusinovich, J. Rodgers, W. Chen, and V. L. Granatstein, “Phase stability in gyro-traveling-wave-tubes”. IEEE Trans. Electron Devices 48(7), 1460–1468 (2001).

    Article  ADS  Google Scholar 

  8. V. L. Bratman, A. W. Cross, G. G. Denisov, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, C. G. Whyte, and A. R. Young, “High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide”. Phys. Rev. Lett. 84(12), 2746–2749 (2000).

    Article  ADS  Google Scholar 

  9. K. R. Chu, “Overview of research on the gyrotron traveling-wave amplifier”. IEEE. Trans. Plasma Sci. 30(3), 903–908 (2002).

    Article  ADS  Google Scholar 

  10. J. P. Calame, M. Garven, B. G. Danly, B. Levush, and K. T. Nguyen, “Gyrotron-Traveling wave-tube circuits based on lossy ceramics”. IEEE Trans. Electron Devices 49(8), 1469–1477 (2002).

    Article  ADS  Google Scholar 

  11. D. E. Pershing, K. T. Nguyen, J. P. Calame, B. G. Danly, B. Levush, F. N. Wood, and M. Garven, “A TE11 Ka-band gryo-TWT amplifier with high-average power compatible distributed loss”. IEEE Trans. Plasma Sci. 32(3), 947–956 (2004).

    Article  ADS  Google Scholar 

  12. Y. S. Yeh, T. S. Wu, Y. T. Lo, C. W. Su, and S. C. Wu, “Stability analysis of TE01 gyrotron traveling wave amplifiers”. Int. J. Electron. 90(8), 517–532 (2003).

    Article  Google Scholar 

  13. K. C. Leou, D. B. McDermott, A. J. Balkcum, and N. C. Luhmann Jr., “Stable high-power TE01 gyro-TWT amplifiers”. IEEE Trans. Plasma Sci. 22(5), 585–592 (1994).

    Article  ADS  Google Scholar 

  14. K. R. Chu, and A. T. Lin, “Gain and bandwidth of the gyro-TWT and CARM amplifiers”. IEEE Trans. Plasma Sci. 16(2), 90–104 (1988).

    Article  ADS  Google Scholar 

  15. Y. Y. Lau, K. R. Chu, L. R. Barnett, and V. L. Granatstein, “Gyrotron traveling wave amplifier: I. Analysis of oscillations”. Int. Journal of Infrared and Millimeter Waves 2(3), 373–393 (1981).

    Article  ADS  Google Scholar 

  16. C. S. Kou, Q. S. Wang, D. B. McDermott, A. T. Lin, K. R. Chu, and N. C. Luhmann Jr., “High-power harmonic gyro-TWT’s—Part I: Linear theory and oscillation study”. IEEE Trans. Plasma Sci. 20(3), 155–161 (1992).

    Article  ADS  Google Scholar 

  17. T. H. Chang, and N. C. Chen, “Transition of absolute instability from global to local modes in a gyrotron traveling-wave amplifier”. Phys. Rev. E. 74(1), 016402.1–016402.7 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Shi-Chang Zhang from Institute of Electronics, Chinese Academy of Sciences for his helpful discussions on the design of the gyro-TWT amplifier and its analysis. This work was supported in part by the National Science Fund of China under contract 60571039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hui Geng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, ZH., Liu, PK., Su, Y.N. et al. Design and Simulation of an Ultra-Broadband Ku-BandGyro-TWT for Radar Applications. Int J Infrared Milli Waves 29, 627–633 (2008). https://doi.org/10.1007/s10762-008-9360-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-008-9360-y

Keyword

Navigation