Skip to main content
Log in

Performance Test of CW 300 GHz Gyrotron FU CW I

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

A 300 GHz CW gyrotron FU CW I has been developed and installed in the Research Center for Development of Far-Infrared Region, University of Fukui as a power source of a high frequency material processing system. Its performance was tested and the maximum power of 1.75 kW / CW has been attained at the beam voltage of 15 kV and the beam current of 1A. The maximum window power efficiency of 15.5% has been obtained at the cathode voltage slightly lower than 15 kV. This gyrotron is designed to deliver a Gaussian beam after mode conversion from the oscillation mode TE22,8 in the cavity with a complex of an internal radiator and beam shaping mirrors. The detailed measurement with an infrared camera has confirmed that a Gaussian beam is radiated when the magnetic field strength B c at the cavity is adjusted at a proper value. However, within a range of B c , the output power is emerged into multiple directions, which suggests simultaneous oscillation of competing cavity modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. V. Bykov, K. I. Rybakov, and V. E. Semenov, J. Phys. D: Appl. Phys. 34, R55 (2001)

    Article  ADS  Google Scholar 

  2. H. Hoshizuki, S. Mitsudo, T. Saji, K. Matsuura, T. Idehara, M. Glyavin, et al., Int. J. Infrared Millim. Waves 26, 1531 (2005)

    Article  Google Scholar 

  3. See references cited in M. Thumn, “State-of-the-Art of High Power Gyro-Devices and Free Electron Masers Update 2005”, FZKA 7198, 2006.

  4. T. Idehara, I. Ogawa, S. Mitsudo, M. Pereyaslavets, N. Nishida, and K. Yoshida, IEEE Trans. Plasma Sci. 27, 340 (1999)

    Article  Google Scholar 

  5. T. Idehara, H. Tsuchiya, O. Watanabe, La Agusu, and S. Mitsudo, Int. J. Infrared Millim. Waves 27(3) (2006) DOI 10.1007/s10762-006-9084-9.

  6. H. Hoshizuki, K. Matsuura, S. Mitsudo, T. Idehara, O. V. Malygin et al., Conf. Digest of 30th IRMMW & 12th THz (2005) 375.

  7. S. Mitsudo, K. Sakai, T. Idehara, et al., Conf. Digest of 31th IRMMW & 14th THz (2006) p.572.

  8. V. Bajaj, C. Farrer, M. Hornstein, I. Mastovsky, J. Vieregg, J. Bryant, B. Elena, K. Kreischer, R. Temkin, and R. Griffin, J. Mag. Res. 160, 85 (2002)

    Article  ADS  Google Scholar 

  9. T. Tatsukawa, T. Maeda, H. Sasai, T. Idehara, M. Mekata, T. Saito, and T. Kanemaki, Int. J. Infrared Millim. Waves 16, 293 (1995)

    Article  ADS  Google Scholar 

  10. S. Mitsudo, T. Aripin, T. Shirai, T. Matsuda, T. Kanemaki, and T. Idehara, Int. J. Infrared Millim. Waves 21, 661 (2000)

    Article  Google Scholar 

  11. T. Tasukawa, A. Doi, M. Teranaka, H. Takashima, F. Goda, T. Idehara, I. Ogawa, and T. Idehara, Int. J. Infrared Millim. Waves 21, 1155 (2000)

    Article  Google Scholar 

  12. Tatsukawa et al., Conf. Digest of 31th IRMMW & 14th THz (2006) p.577.

  13. M. K. Hornstein, B. S. Bajai, R. G. Griffin, and R. J. Temkin, IEEE Trans. Plasma Sci. 34, 524 (2006)

    Article  Google Scholar 

  14. T. Idehara, I. Ogawa, La Agusu, T. Kanemaki, S. Mitsudo, T. Saito, et al. Int. J. Infrared Millim. Waves 28(6), 433 (2007)

    Article  ADS  Google Scholar 

  15. La Agusu, T. Idehara, H. Mori, T. Saito, I. Ogawa, and S. Mitsudo Int. J. Infrared Millim. Waves 28(5), 315 (2007)

    Article  Google Scholar 

  16. V. E. Zapevalov, V. K. Lygin, O. V. Malygin et al., Conf. Digest of 29th IRMMW & 12th THz (2004) p.149.

  17. T. Saito, T. Idehara, S. Mitsudo et al., Conf. Digest of 31th IRMMW & 14th THz (2006) p.24.

  18. N. I. Zaytsev, T. P. Panktratova, M. I. Petelin, and V. A. Flyagin, Radio Eng. Electron. Phys. 19, 103 (1974)

    Google Scholar 

  19. T. Saito, T. Nakano, K. Sakai, et al., Conf. Digest of Eighth IEEE International Vacuum Electronics Conference, pp. 345–346

  20. T, Saito, T. Nakano, S. Mitsudo, I. Ogawa, and T. Idehara, Plasma and Fusion Research 2, 024 (2007)

    Google Scholar 

  21. M. V. Kartikeyan, E. Borie, and M. K. A. Thumn, Gyrotrons (Springer, Berlin, 2004).

    Google Scholar 

  22. D. R. Whaley, M. Q. Tran, S. Alberti, T. M. Tran, T. M. Antonsen, and C. Tran, Phys. Rev. Lett. 75, 1304 (1995)

    Article  ADS  Google Scholar 

  23. M. Yeddulla, G. S. Nusinovich, and T. M. Antonsen, Phys. Plasmas 10, 4513 (2003)

    Article  ADS  Google Scholar 

  24. K. E. Kreischer and R. J. Temkin, Phys. Rev. Lett. 59, 547 (1987)

    Article  ADS  Google Scholar 

  25. M. V. Kartikeyan, E. Borie, and M. K. A. Thumn, IEEE Trans. Plasma Sci. 28, 645 (2000)

    Article  Google Scholar 

  26. G. S. Nusinovich, Introduction to the Physics of Gyrotrons (The Johns Hopkins University Press, Boltimore, 2004).

    Google Scholar 

  27. K. E. Kreischer, R. J. Temkin, H. R. Fetterman, and W. J. Mulligan, IEEE Trans. Microwave Theor. Tech. MT-32, 481 (1984)

    Article  ADS  Google Scholar 

  28. S. Sabchevski, T. Saito, T. Idehara et al., Submitted to Int. J. Infrared Millim. Waves (In press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Saito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, T., Nakano, T., Hoshizuki, H. et al. Performance Test of CW 300 GHz Gyrotron FU CW I. Int J Infrared Milli Waves 28, 1063–1078 (2007). https://doi.org/10.1007/s10762-007-9291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-007-9291-z

Keywords

Navigation