Skip to main content
Log in

ANALYSIS OF WAVEFORM ERRORS IN MILLIMETER-WAVE LFMCW SYNTHETIC APERTURE RADAR

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

In remote sensing applications, there is a special interest in the lightweight, cost effective, and high resolution imaging sensors. The combination of linearly frequency modulated continuous wave (LFMCW) technology and synthetic aperture radar (SAR) technique can lead to such a sensor. This paper concentrates on the analysis of waveform errors in millimeter-wave (MMW) LFMCW SAR. The generating scheme of millimeter-wave LFMCW waveforms with phase locked loop (PLL) and direct digital synthesizer (DDS) combined frequency synthesizer is investigated. The impacts of quantization errors, spurs, and frequency nonlinearities are analyzed. Simulation results show that the quality of LFMCW waveforms has a direct influence on the SAR images. Hence a scheme of frequency synthesizer to achieve high performance MMW LFMCW waveform is proposed. This synthesizer driven by a DDS array can adaptive suppress the spurious level without degradation of excellent frequency linearity and fast switching speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Wiley, “Synthetic aperture radars,” IEEE Trans. Aerosp. Electron. Syst., 21(3), 440–443 (1985).

    Article  Google Scholar 

  2. R. E. Blahut, Theory of Remote Image Formation, Cambridge University Press, (2004).

  3. A. Meta, P. Hoogeboom, and D. Haag, “Development of signal processing algorithms for high resolution airborne millimeter wave FMCW SAR,” Proc. IEEE Int. Radar Conf., pp. 326–331 (2005).

  4. W. Q. Wang, and J. Y. Cai, “An approach of developing high performance millimeter-wave frequency synthesizer,” Int. J. Infrared Milli. Waves, (2006), in press.

  5. K. Tajima, Y. Imai, and Y. Kanagawa, et al., “A 5 to 10GHz low spurious triple tuned type PLL synthesizer driven by frequency converted DDS unit,” IEEE MIT-S. 3, 1217–1220 (1997).

    Google Scholar 

  6. D. R. Stephens, Phase-locked Loops for Wireless Communications: Digital, Analog and Optical Implementations, Kluwer Academic Publishers, pp. 195–227 (2002).

  7. M. M. Abousetta, and D. C. Cooper, “Noise analysis of digitized FMCW radar waveforms,” IEE Proc. Radar, Sonar Navig., 145(4) 209–215 (1998).

    Article  Google Scholar 

  8. W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. Artech House, pp. 203–243 (1995).

  9. W. M. Brown, “SAR resolution in the presence of phase errors,” IEEE Trans. Aerosp. Electron. Syst., 24(6) 808–814 (1988).

    Article  ADS  Google Scholar 

  10. G. W. Davidson, F. Wong, and I. Cumming, “The effect of pulse phase errors on the chirp scaling SAR processing algorithm,” IEEE Trans. Geosci. Remote Sensing, 34(2) 471–478 (1996).

    Article  Google Scholar 

  11. T. Moriyama, Y. Yamaguchi, and H. Yamada, “Three-dimensional fully polarimetric imaging in snow pack by a synthetic aperture FM-CW radar,” IEICE Trans. Commun., E83-B(9) 1963–1968 (2000).

    Google Scholar 

  12. M. Nalecz, K. Kulpa, and R. Rytel-Andrianik, et al., “Data recording and processing in FMCW SAR system,” Proc. Int. Radar Sym., pp. 171–175 (2004).

  13. J. J. M. D. Wit, P. Hoogeboom, “High resolution FMCW SAR: design and processing aspects,” Proc. Europ. Synthetic Aperture Radar Sym., pp. 163–166 (2002).

  14. A. B. D. Campo, A. A. Lopez, and B. P. D. Naranjo, et al., “CWLFM millimeter-wave radar for ISAR imaging with medium range coverage,” Proc. IEEE Int. Radar Conf., pp. 933–938 (2005).

  15. G. Franceschetti, and R. Lanari, Synthetic Aperture Radar Processing. New York: CRC Press, pp. 13–63 (1999).

    Google Scholar 

  16. A. Stelzer, E. Kolmhofer, and S. Scheiblhofer, “Fast 77GHz chirps with direct digital synthesis and phase locked loop,” Proc. Asia-Pacific Microwave Conf., pp. 1677–1680 (2005).

  17. B. Y. Lu, D. N. Liang, “Effects of FM linearity on the performance of LFM signals (in Chinese),” Systems Engineering and Electronics, 27(8), 1384–1386 (2005).

    Google Scholar 

  18. X. Y. Tian, G. Dong, and M. H. Zhu, “Analysis of errors in waveform storage LFM generator design (in Chinese),” J. of Electron. Info. Technology, 27(8) 1240–1243 (2005).

    Google Scholar 

  19. W. Q. Wang, “Analytical modeling and simulation of phase noise in bistatic synthetic aperture radar systems,” Fluctuation and Noise Lett., 6(3) L297–L303 (2006).

    Article  ADS  Google Scholar 

  20. W. Q. Wang, J. Y. Cai, and Y. W. Yang, “Extracting phase noise of microwave and millimeter-wave signals by deconvolution,” IEE Proc. Sci. Meas. Technol., 153(1) 7–12 (2006).

    Article  Google Scholar 

  21. J. L. Auterman, “Phase stability requirements for a bistatic SAR,” Proc. IEEE Nat. Radar Conf., pp. 48–52 (1984).

  22. K. Tajima, Y. Imai, Y. Kanagawa, et al., “Low spurious frequency setting algorithm for a triple tuned type PLL synthesizer driven by a DDS,” IEICE Trans. Electron., 85(3) 595–598 (2002).

    Google Scholar 

  23. J. B. Mead, A. L. Pazmany, and S. M. Sekelsky, et al., “Millimeter-wave radars for remotely sensing clouds and precipitation,” IEEE proc., 82(12) 1891–1906 (1994).

    Article  Google Scholar 

  24. A. Meta, J. J. M. D. Wit, and P. Hoogeboom, “Development of a high resolution airborne millimeter wave FM-CW SAR,” Proc. European Radar Conf., pp. 209–212 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W. ANALYSIS OF WAVEFORM ERRORS IN MILLIMETER-WAVE LFMCW SYNTHETIC APERTURE RADAR. Int J Infrared Milli Waves 27, 1433–1444 (2006). https://doi.org/10.1007/s10762-006-9151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-006-9151-2

Keywords

Navigation