Skip to main content
Log in

Analytical Simulation of an InAsSb Photovoltaic Detector for Mid-Infrared Applications

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

A generic model of a mid-infrared photodetector based on a narrow bandgap semiconductor has been developed. The model has been applied for analysis and simulation of an InAs0.89Sb0.11 photovoltaic detector for operation at room temperature in 2–5 μm wavelength region. The model takes into account the effect of tunneling and other components of dark current on the detectivity of the device by considering all the three dominant recombination mechanisms e.g., radiative, Shockley-Read-Hall and Auger recombination. The study revealed that the dark current of the photodetector under reverse bias is dominated by trap-assisted tunneling component of current and this causes the detectivity of the device to decrease at high reverse bias. It is further concluded that by operating the device at a suitable low reverse bias it is possible to improve the room-temperature detectivity significantly as compared to its value at zero bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, K. Adamiec, and J. Rutkowski, Narrow-Gap Semiconductor Photodiode, (SPIE, Bellingham, USA, 2000).

    Google Scholar 

  2. A. Rogalski, “New trends in semiconductor infrared detectors,” Opt. Eng. 33, 1395–1412 (1994).

    Article  ADS  Google Scholar 

  3. A. Krier, H. H. Gao, and V. V. Sherstnev, “Room temperature InAs0.89 Sb0.11 photodetectors for CO detection at 4.6 μm,” Appl. Phys. Lett. 77(6), 872–874 (2000).

    Article  ADS  Google Scholar 

  4. Y. Tian, B. Zhang, T. Zhan, H. Jiang, and Y. Jin, “Theoretical analysis of the detectivity in N-p and P-n GaSb/GaInAsSb infrared photo-detectors,” IEEE Trans. Electron Dev. ED-47, 544–551 (2000).

    Article  Google Scholar 

  5. X. Y. Gong, T. Yamaguchi, H. Kan, T. Makino, T. Iida, T. Kato et al., M. Kumagawa, “Room temperature InAsxP1-x-y Sby/InAs photodetectors with large quantum efficiency,” Jpn. J. Appl. Phys. 36, 2614–2616 (1997).

    Article  Google Scholar 

  6. P. Chakrabarti, A. Krier, and A. F. Morgan, “Analysis and simulation of a mid-infrared P+-InAs0.55Sb0.15P0.30/n0-InAs0.89Sb0.11/N+-InAs0.55Sb0.15P0.30 double heterojunction photodetector grown by LPE,” IEEE Trans. Electron Devices 50, (2003)

  7. A. Rogalski, “Heterostructure infrared photovoltaic detectors,” Infrared Phys. Technol. 41, 213–238 (2000).

    Article  ADS  Google Scholar 

  8. A. Rogalski, R. Ciupa, and W. Larkowski, “Near room temperature InAsSb photodiodes: theoretical predictions and experimental data,” Solid-state Electron. 39, 1593–1600 (1996).

    Article  Google Scholar 

  9. N. T. Niedziela and R. Ciupa, “Ultimate parameters of Hg1xCdxTe and InAs1-x Sbx n+-p photodiodes,” Solid-state Electron. 45, 41–46 (2001).

    Article  Google Scholar 

  10. D. Rosenfeld and G. Bahir, “A model for the trap assisted tunneling mechanism in diffused n-p and implanted n+-p HgCdTe photodiodes,” IEEE Trans. Electron Devices 39, 1638–1645 (1992).

    Article  ADS  Google Scholar 

  11. M. Henini and M. Razeghi, Eds. Handbook of Infrared Detection Technologies, (Elsevier, New York, 2002).

    Google Scholar 

  12. B. F. Levine, “Quantum-well Infrared Photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).

    Article  ADS  Google Scholar 

  13. R. Schoolar, S. Price, and J. Rosbeck, “Investigation of the generation-recombination currents in HgCdTe midwavelength infrared photodiodes,” J.Vac. Sci. Technol. B 10, 1507–1514 (1992).

    Article  Google Scholar 

  14. S. M. Sze, Physics of Semiconductor Devices, (Wiley Eastern, New Delhi, 1981).

    Google Scholar 

  15. M. Levinshtein, S. Rumyantsev, and M. Shur: “Hand book series on Semiconductor Parameters,” 1, World Scientific, (1996).

  16. M. Levinshtein, S. Rumyantsev and M.S. Shur: “Hand book series on Semiconductor Parameters,” 2, World Scientific, (1996).

  17. W. W. Anderson, “Absorption constant of Pb1x SnxTe and Hg1x CdxTe alloys,” Infrared Phys. 20, 363–372 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, P., Saxena, P.K. & Lal, R.K. Analytical Simulation of an InAsSb Photovoltaic Detector for Mid-Infrared Applications. Int J Infrared Milli Waves 27, 1119–1132 (2006). https://doi.org/10.1007/s10762-006-9093-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-006-9093-8

Keywords

Navigation