Skip to main content
Log in

GAIN AND BANDWIDTH ANALYSIS OF A VANE-LOADED GYRO-TWT

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Theoretical investigation of the peak-gain and 3-dB bandwidth of the vane-loaded gyro-traveling wave tube (gyro-TWT) amplifier in the small-orbit TE01 waveguide mode configuration at 35 GHz has been presented. The vane-loaded gyro-TWT enjoys higher gain and bandwidth compared to that of the smooth-wall device. In the analysis, the azimuthal harmonic effects generated due to the angular periodicity of vanes in the wedge-shaped metal vane-loaded cylindrical waveguide interaction structure have been taken into account in the cold (beam-absent) dispersion relation only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. R. Chu, The electron cyclotron maser, Rev. Mod. Phys., (2004), vol. 76, pp. 489–540.

    Article  ADS  Google Scholar 

  2. D. B. McDermott, A. J. Balkcum, and N. C. Luhmann, Jr., 35GHz, 25kW CW low-voltage third harmonie gyrotron, IEEE Trans. Plasma Sci., (1996), vol. 24, pp. 613–619.

    Article  Google Scholar 

  3. C. K. Chong, D. B. McDermott, A. T. Lin, W. J. DeHope, Q. S. Wang, and N. C. Luhmann, Jr., Stability of a 95GHz slotted third harmonic gyro-TWT amplifier, IEEE Trans. Plasma Sci, (1996), vol. 24, pp. 735–743.

    Article  Google Scholar 

  4. K. R. Chu, Overview of research on the gyrotron traveling wave amplifier, IEEE Trans. Plasma Sci., (2002), vol. 30, pp. 903–908.

    Article  Google Scholar 

  5. K. L. Flech, B. G. Danly, H. R. Jory, K. E. Kreischer, W. Lawson, B. Levush, and R. J. Temkin, Characteristics and application of fast-wave gyro-devices, Proc. IEEE, (1999), vol. 87, pp. 752–781.

    Article  Google Scholar 

  6. G. Singh, M. V. Kartikeyan, A. K. Sinha, and B. N. Basu, Effects of beam and magnetic field parameters on highly competing TE01 and TE21 modes of vane-loaded gyro-TWT, Int. J. Infrared and Millimeter Waves, (2002), vol. 23, pp. 517–533.

    Article  Google Scholar 

  7. K. R. Chu, L. R. Barnett, H. Y. Chen, S. H. Chen, Ch. Wang, Y. S. Yeh, Y. C. Tsai, T. T. Yang, and T. Y. Dawn, Stabilization of absolute instabilities in the gyrotron traveling wave amplifier, Phys. Rev. Lett., (1995), vol. 74, pp. 1103–1106.

    Article  ADS  Google Scholar 

  8. K. R. Chu, H. Y. Chen, C. L. Jung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang, and D. J. Dialetis, Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier, IEEE Trans. Plasma Sci., (1999), vol. 27, pp. 391–404.

    Article  Google Scholar 

  9. D. B. McDermott, B. H. Deng, K. X. Liu, J. Van Meter, Q. S. Wang, and N. C. Luhmann, Jr., Stable 2MW, 35GHz, third harmonic TE41 gyro-TWT amplifier, IEEE Trans. Plasma Sci., (1998), vol. 26, pp. 482–487.

    Article  Google Scholar 

  10. D. E. Pershing, J. P. Calame, B. G. Danly, B. Levush, F. N. Wood, and M. Garven, A TE11 Ka band gyro-TWT amplifier with high average power compatible distributed loss, IEEE Trans. Plasma Sci., (2004), vol. 32, pp. 947–956.

    Article  Google Scholar 

  11. D. S. Furuno, D. B. McDermott, C. S. Kou, N. C. Luhmann, Jr., and P. Vitello, Theoretical and experimental investigation of high-harmonic gyro-traveling-wave-tube amplifier, Phys. Rev. Lett., (1989), vol. 62, pp. 1314–1317.

    Article  ADS  Google Scholar 

  12. W. W. Destler, D. W. Hugdgings, M. J. Rhee, S. Kawasaki, and V. L. Granatstein, Experimental study of microwave generation and suppression in a non-neutral E-layer, J. Appl. Phys., (1977), vol. 48, pp. 3291–3296.

    Article  ADS  Google Scholar 

  13. W. W. Destler, H. Romero, C. D. Striffler, R. L. Weiler, and W. Narnkung, Intense microwave generation from a non-neutral rotating E-layer, J. Appl. Phys., (1981), vol. 52, pp. 2740–2749.

    Article  ADS  Google Scholar 

  14. C. K. Chong, D. B. McDermott, A. J. Balkaum, and N. C. Luhmann, Jr., Nonlinear analysis of high harmonic gyro-TWT amplifier. IEEE Trans. Plasma Sci., (1992), vol. 20, pp.176–187.

    Article  ADS  Google Scholar 

  15. G. Singh, S.M.S. Ravi Chandra, P. V. Bhaskar, P.K. Jain, and B.N. Basu, Analysis of vane-loaded gyro-TWT for gain-frequency response, IEEE Trans. Plasma Sci., (2004), vol. 32, pp.2130–2138.

    Article  Google Scholar 

  16. Q. S. Wang, D. B. McDermott, and N. C. Luhmann, Jr., Demonstration of marginal stability theory by 200kW second harmonic gyro-TWT amplifier, Phys. Rev. Lett., (1995), vol. 75, pp. 4322–4325.

    Article  ADS  Google Scholar 

  17. G. Singh, S.M.S. Ravi Chandra, P. V. Bhaskar, P.K. Jain, and B.N. Basu, Analysis of an azimuthally periodic vane-loaded cylindrical waveguide for a gyro-traveling wave tube, Int. J. Electron., (1999), vol. 86, pp. 1463–1479.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, G., Kartikeyan, M.V. & Park, G.S. GAIN AND BANDWIDTH ANALYSIS OF A VANE-LOADED GYRO-TWT. Int J Infrared Milli Waves 27, 333–342 (2006). https://doi.org/10.1007/s10762-006-9055-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-006-9055-1

Keyword

Navigation