Skip to main content

Advertisement

Log in

Periodontopathogen-Related Cell Autophagy—A Double-Edged Sword

  • REVIEW
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The periodontium is a highly organized ecosystem, and the imbalance between oral microorganisms and host defense leads to periodontal diseases. The periodontal pathogens, mainly Gram-negative anaerobic bacteria, colonize the periodontal niches or enter the blood circulation, resulting in periodontal tissue destruction and distal organ damage. This phenomenon links periodontitis with various systemic conditions, including cardiovascular diseases, malignant tumors, steatohepatitis, and Alzheimer's disease. Autophagy is an evolutionarily conserved cellular self-degradation process essential for eliminating internalized pathogens. Nowadays, increasing studies have been carried out in cells derived from periodontal tissues, immune system, and distant organs to investigate the relationship between periodontal pathogen infection and autophagy-related activities. On one hand, as a vital part of innate and adaptive immunity, autophagy actively participates in host resistance to periodontal bacterial infection. On the other, certain periodontal pathogens exploit autophagic vesicles or pathways to evade immune surveillance, therefore achieving survival within host cells. This review provides an overview of the autophagy process and focuses on periodontopathogen-related autophagy and their involvements in cells of different tissue origins, so as to comprehensively understand the role of autophagy in the occurrence and development of periodontal diseases and various periodontitis-associated systemic illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Lamont, R.J., H. Koo, and G. Hajishengallis. 2018. The oral microbiota: Dynamic communities and host interactions. Nature Reviews Microbiology 16 (12): 745–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eke, P.I., L. Wei, W.S. Borgnakke, et al. 2016. Periodontitis prevalence in adults >/= 65 years of age, in the USA. Periodontology 2000 72 (1): 76–95.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jiao, J., W. Jing, Y. Si, et al. 2021. The prevalence and severity of periodontal disease in Mainland China: Data from the Fourth National Oral Health Survey (2015–2016). Journal of Clinical Periodontology 48 (2): 168–179.

    Article  PubMed  Google Scholar 

  4. Peres, M.A., L.M.D. Macpherson, R.J. Weyant, et al. 2019. Oral diseases: A global public health challenge. Lancet 394 (10194): 249–260.

    Article  PubMed  Google Scholar 

  5. Ramseier, C.A., A. Anerud, M. Dulac, et al. 2017. Natural history of periodontitis: Disease progression and tooth loss over 40 years. Journal of Clinical Periodontology 44 (12): 1182–1191.

    Article  PubMed  Google Scholar 

  6. Socransky, S.S., A.D. Haffajee, M.A. Cugini, et al. 1998. Microbial complexes in subgingival plaque. Journal of Clinical Periodontology 25 (2): 134–144.

    Article  CAS  PubMed  Google Scholar 

  7. Farrugia, C., G.P. Stafford, J. Potempa, et al. 2021. Mechanisms of vascular damage by systemic dissemination of the oral pathogen Porphyromonas gingivalis. FEBS Journal 288 (5): 1479–1495.

    Article  CAS  PubMed  Google Scholar 

  8. Blasco-Baque, V., L. Garidou, C. Pomie, et al. 2017. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut 66 (5): 872–885.

    Article  CAS  PubMed  Google Scholar 

  9. Dominy, S.S., C. Lynch, F. Ermini, et al. 2019. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science Advances 5 (1): 12.

    Article  Google Scholar 

  10. Figuero, E., Y.W. Han, and Y. Furuichi. 2020. Periodontal diseases and adverse pregnancy outcomes: Mechanisms. Periodontology 2000 83 (1): 175–188.

    Article  PubMed  Google Scholar 

  11. Guo, Y., Y. Liu, H. Yang, et al. 2021. Associations of Porphyromonas gingivalis Infection and Low Beclin1 Expression With Clinicopathological Parameters and Survival of Esophageal Squamous Cell Carcinoma Patients. Pathology Oncology Research 27: 1609976.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mizushima, N., and B. Levine. 2010. Autophagy in mammalian development and differentiation. Nature Cell Biology 12 (9): 823–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miller, D.R., and A. Thorburn. 2021. Autophagy and organelle homeostasis in cancer. Developmental Cell 56 (7): 906–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, K.H., and M.S. Lee. 2014. Autophagy–a key player in cellular and body metabolism. Nature Reviews. Endocrinology 10 (6): 322–337.

    Article  CAS  PubMed  Google Scholar 

  15. Pohl, C., and I. Dikic. 2019. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366 (6467): 818–822.

    Article  CAS  PubMed  Google Scholar 

  16. Medeiros, T.C., and M. Graef. 2019. Autophagy determines mtDNA copy number dynamics during starvation. Autophagy 15 (1): 178–179.

    Article  CAS  PubMed  Google Scholar 

  17. Yang, Z., P. Lin, B. Chen, et al. 2021. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5). Autophagy 17 (10): 3048–3067.

    Article  CAS  PubMed  Google Scholar 

  18. Larabi, A., N. Barnich, and H.T.T. Nguyen. 2020. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy 16 (1): 38–51.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, Y., and B. Levine. 2015. Autosis and autophagic cell death: The dark side of autophagy. Cell Death and Differentiation 22 (3): 367–376.

    Article  CAS  PubMed  Google Scholar 

  20. Baxt, L.A., A.C. Garza-Mayers, and M.B. Goldberg. 2013. Bacterial subversion of host innate immune pathways. Science 340 (6133): 697–701.

    Article  CAS  PubMed  Google Scholar 

  21. Zheng, S., S. Yu, X. Fan, et al. 2021. Porphyromonas gingivalis survival skills: Immune evasion. Journal of Periodontal Research 56 (6): 1007–1018.

    Article  PubMed  Google Scholar 

  22. Yim, W.W., and N. Mizushima. 2020. Lysosome biology in autophagy. Cell Discovery 6: 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, L., D.J. Klionsky, and H.M. Shen. 2023. The emerging mechanisms and functions of microautophagy. Nature Reviews Molecular Cell Biology 24 (3): 186–203.

    Article  CAS  PubMed  Google Scholar 

  24. Fleming, A., M. Bourdenx, M. Fujimaki, et al. 2022. The different autophagy degradation pathways and neurodegeneration. Neuron 110 (6): 935–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parzych, K.R., and D.J. Klionsky. 2014. An overview of autophagy: Morphology, mechanism, and regulation. Antioxidants & Redox Signaling 20 (3): 460–473.

    Article  CAS  Google Scholar 

  26. Palikaras, K., E. Lionaki, and N. Tavernarakis. 2018. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nature Cell Biology 20 (9): 1013–1022.

    Article  CAS  PubMed  Google Scholar 

  27. Mizushima, N., T. Yoshimori, and Y. Ohsumi. 2011. The role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology 27: 107–132.

    Article  CAS  PubMed  Google Scholar 

  28. Cadwell, K. 2016. Crosstalk between autophagy and inflammatory signalling pathways: Balancing defence and homeostasis. Nature Reviews Immunology 16 (11): 661–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feng, Y., D. He, Z. Yao, et al. 2014. The machinery of macroautophagy. Cell Research 24 (1): 24–41.

    Article  CAS  PubMed  Google Scholar 

  30. Melia, T.J., A.H. Lystad, and A. Simonsen. 2020. Autophagosome biogenesis: From membrane growth to closure. Journal of Cell Biology 219 (6): e202002085.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mizushima, N., T. Yoshimori, and B. Levine. 2010. Methods in mammalian autophagy research. Cell 140 (3): 313–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seglen, P.O., M. Luhr, I.G. Mills, et al. 2015. Macroautophagic cargo sequestration assays. Methods 75: 25–36.

    Article  CAS  PubMed  Google Scholar 

  33. Loos, B., A. du Toit, and J.H. Hofmeyr. 2014. Defining and measuring autophagosome flux-concept and reality. Autophagy 10 (11): 2087–2096.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Efeyan, A., W.C. Comb, and D.M. Sabatini. 2015. Nutrient-sensing mechanisms and pathways. Nature 517 (7534): 302–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, Y.C., and K.L. Guan. 2015. mTOR: A pharmacologic target for autophagy regulation. The Journal of Clinical Investigation 125 (1): 25–32.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Klionsky, D.J., E.H. Baehrecke, J.H. Brumell, et al. 2011. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 7 (11): 1273–1294.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Klionsky, D.J., K. Abdelmohsen, A. Abe, et al. 2016. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12 (1): 1–222.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Klionsky, D.J., A.K. Abdel-Aziz, S. Abdelfatah, et al. 2021. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy 17 (1): 1–382.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Greabu, M., F. Giampieri, M.M. Imre, et al. 2020. Autophagy, one of the main steps in periodontitis pathogenesis and evolution. Molecules 25 (18): 4338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, J.S., and O. Yilmaz. 2021. Key elements of gingival epithelial homeostasis upon bacterial interaction. Journal of Dental Research 100 (4): 333–340.

    Article  CAS  PubMed  Google Scholar 

  41. Chen, W., A. Alshaikh, S. Kim, et al. 2019. Porphyromonas gingivalis Impairs Oral Epithelial Barrier through Targeting GRHL2. Journal of Dental Research 98 (10): 1150–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abe-Yutori, M., T. Chikazawa, K. Shibasaki, et al. 2017. Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function. Journal of Periodontal Research 52 (1): 42–50.

    Article  CAS  PubMed  Google Scholar 

  43. Hagio-Izaki, K., M. Yasunaga, M. Yamaguchi, et al. 2018. Lipopolysaccharide induces bacterial autophagy in epithelial keratinocytes of the gingival sulcus. BMC Cell Biology 19 (1): 18.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang, X., L. Niu, Y. Pan, et al. 2020. LL-37-induced autophagy contributed to the elimination of live Porphyromonas gingivalis internalized in keratinocytes. Frontiers in Cellular and Infection Microbiology 10: 561761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, K., J.S. Roberts, C.H. Choi, et al. 2018. Porphyromonas gingivalis traffics into endoplasmic reticulum-rich-autophagosomes for successful survival in human gingival epithelial cells. Virulence 9 (1): 845–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu, X., L. Niu, C. Ma, et al. 2020. Calcitriol decreases live Porphyromonas gingivalis internalized into epithelial cells and monocytes by promoting autophagy. Journal of Periodontology 91 (7): 956–966.

    Article  CAS  PubMed  Google Scholar 

  47. Liu, M., J. Shao, Y. Zhao, et al. 2023. Porphyromonas gingivalis evades immune clearance by regulating lysosome Efflux. Journal of Dental Research 102 (5): 555–564.

    Article  CAS  PubMed  Google Scholar 

  48. Yilmaz, O., P. Verbeke, R.J. Lamont, et al. 2006. Intercellular spreading of Porphyromonas gingivalis infection in primary gingival epithelial cells. Infection and Immunity 74 (1): 703–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pollanen, M.T., J.I. Salonen, and V.J. Uitto. 2000. Structure and function of the tooth-epithelial interface in health and disease. Periodontology 2003 (31): 12–31.

    Google Scholar 

  50. Tsuda, H., K. Ochiai, N. Suzuki, et al. 2010. Butyrate, a bacterial metabolite, induces apoptosis and autophagic cell death in gingival epithelial cells. Journal of Periodontal Research 45 (5): 626–634.

    Article  CAS  PubMed  Google Scholar 

  51. Evans, M., T. Murofushi, H. Tsuda, et al. 2017. Combined effects of starvation and butyrate on autophagy-dependent gingival epithelial cell death. Journal of Periodontal Research 52 (3): 522–531.

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Y., M. Huang, W. Xu, et al. 2022. Calcitriol-enhanced autophagy in gingival epithelium attenuates periodontal inflammation in rats with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 13: 1051374.

    Article  PubMed  Google Scholar 

  53. Huang, X., S. Kuang, Z. Shen, et al. 2020. High glucose disrupts autophagy lysosomal pathway in gingival epithelial cells via ATP6V0C. Journal of Periodontology 91 (5): 705–714.

    Article  CAS  PubMed  Google Scholar 

  54. Vicencio, E., E.M. Cordero, B.I. Cortes, et al. 2020. Aggregatibacter actinomycetemcomitans induces autophagy in human junctional epithelium keratinocytes. Cells 9 (5): 1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bugueno, I.M., F. Batool, L. Keller, et al. 2018. Porphyromonas gingivalis bypasses epithelial barrier and modulates fibroblastic inflammatory response in an in vitro 3D spheroid model. Science and Reports 8 (1): 14914.

    Article  Google Scholar 

  56. Choi, Y.S., Y.C. Kim, S. Ji, et al. 2014. Increased bacterial invasion and differential expression of tight-junction proteins, growth factors, and growth factor receptors in periodontal lesions. Journal of Periodontology 85 (8): e313–322.

    PubMed  Google Scholar 

  57. An, Y., W. Liu, P. Xue, et al. 2016. Increased autophagy is required to protect periodontal ligament stem cells from apoptosis in inflammatory microenvironment. Journal of Clinical Periodontology 43 (7): 618–625.

    Article  PubMed  Google Scholar 

  58. Oka, S., X. Li, F. Zhang, et al. 2021. Loss of Dec1 prevents autophagy in inflamed periodontal ligament fibroblast. Molecular Biology Reports 48 (2): 1423–1431.

    Article  CAS  PubMed  Google Scholar 

  59. Oka, S., X. Li, F. Sato, et al. 2021. Dec2 attenuates autophagy in inflamed periodontal tissues. Immunity, Inflammation and Disease 9 (1): 265–273.

    Article  CAS  PubMed  Google Scholar 

  60. Liu, J., X. Wang, F. Xue, et al. 2022. Abnormal mitochondrial structure and function are retained in gingival tissues and human gingival fibroblasts from patients with chronic periodontitis. Journal of Periodontal Research 57 (1): 94–103.

    Article  CAS  PubMed  Google Scholar 

  61. Xiao, J., X. Huang, H. Wang, et al. 2023. CKIP-1 Promotes P. gingivalis-induced inflammation of periodontal soft tissues by inhibiting autophagy. Inflammation 46 (5): 1997–2010.

    Article  CAS  PubMed  Google Scholar 

  62. Jiang, K., J. Li, L. Jiang, et al. 2023. PINK1-mediated mitophagy reduced inflammatory responses to Porphyromonas gingivalis in macrophages. Oral Diseases 29 (8): 3665–3676.

    Article  PubMed  Google Scholar 

  63. Liu, J., X. Wang, M. Zheng, et al. 2018. Lipopolysaccharide from Porphyromonas gingivalis promotes autophagy of human gingival fibroblasts through the PI3K/Akt/mTOR signaling pathway. Life Sciences 211: 133–139.

    Article  CAS  PubMed  Google Scholar 

  64. Liu, Y., S. Li, S. Zhang, et al. 2017. Lipopolysaccharide of Porphyromonas gingivalis promotes the autophagy of human gingival fibroblasts. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 33 (3): 315–319.

    CAS  PubMed  Google Scholar 

  65. Bullon, P., M.D. Cordero, J.L. Quiles, et al. 2012. Autophagy in periodontitis patients and gingival fibroblasts: Unraveling the link between chronic diseases and inflammation. BMC Medicine 10: 122.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kim, W.J., S.Y. Park, O.S. Kim, et al. 2021. Autophagy upregulates inflammatory cytokines in gingival tissue of patients with periodontitis and lipopolysaccharide-stimulated human gingival fibroblasts. Journal of Periodontology 93 (3): 380–391.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Memmert, S., A.V.B. Nogueira, A. Damanaki, et al. 2018. Damage-regulated autophagy modulator 1 in oral inflammation and infection. Clinical Oral Investigations 22 (8): 2933–2941.

    Article  PubMed  Google Scholar 

  68. Gallorini, M., V. di Giacomo, V. Di Valerio, et al. 2016. Cell-protection mechanism through autophagy in HGFs/S. mitis co-culture treated with Chitlac-nAg. Journal of Materials Science: Materials in Medicine 27 (12): 186.

    PubMed  Google Scholar 

  69. Monteith, A.J., J.M. Miller, C.N. Maxwell, et al. 2021. Neutrophil extracellular traps enhance macrophage killing of bacterial pathogens. Science Advances 7 (37): eabj2101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pidwill, G.R., J.F. Gibson, J. Cole, et al. 2020. The role of macrophages in staphylococcus aureus infection. Frontiers in Immunology 11: 620339.

    Article  CAS  PubMed  Google Scholar 

  71. Jo, E.K., J.M. Yuk, D.M. Shin, et al. 2013. Roles of autophagy in elimination of intracellular bacterial pathogens. Frontiers in Immunology 4: 97.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Germic, N., Z. Frangez, S. Yousefi, et al. 2019. Regulation of the innate immune system by autophagy: Monocytes, macrophages, dendritic cells and antigen presentation. Cell Death and Differentiation 26 (4): 715–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhao, J., W. Geng, K. Wan, et al. 2021. Lipoxin A4 promotes autophagy and inhibits overactivation of macrophage inflammasome activity induced by Pg LPS. Journal of International Medical Research 49 (2): 300060520981259.

    Article  CAS  PubMed  Google Scholar 

  74. Park, M.H., S.Y. Jeong, H.S. Na, et al. 2017. Porphyromonas gingivalis induces autophagy in THP-1-derived macrophages. Molecular Oral Microbiology 32 (1): 48–59.

    Article  CAS  PubMed  Google Scholar 

  75. Lee, H.A., M.H. Park, Y. Song, et al. 2020. Role of Aggregatibacter actinomycetemcomitans-induced autophagy in inflammatory response. Journal of Periodontology 91 (12): 1682–1693.

    Article  CAS  PubMed  Google Scholar 

  76. den Dunnen, J., S.I. Gringhuis, and T.B. Geijtenbeek. 2009. Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunology, Immunotherapy 58 (7): 1149–1157.

    Article  Google Scholar 

  77. Zeituni, A.E., R. Jotwani, J. Carrion, et al. 2009. Targeting of DC-SIGN on human dendritic cells by minor fimbriated Porphyromonas gingivalis strains elicits a distinct effector T cell response. Journal of Immunology 183 (9): 5694–5704.

    Article  CAS  Google Scholar 

  78. Davey, M., X. Liu, T. Ukai, et al. 2008. Bacterial fimbriae stimulate proinflammatory activation in the endothelium through distinct TLRs. Journal of Immunology 180 (4): 2187–2195.

    Article  CAS  Google Scholar 

  79. El-Awady, A.R., B. Miles, E. Scisci, et al. 2015. Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk. PLoS Pathogens 10 (2): e1004647.

    Article  PubMed  Google Scholar 

  80. Xie, H.A., S.W. Cai, and R.J. Lamont. 1997. Environmental regulation of fimbrial gene expression in Porphyromonas gingivalis. Infection and Immunity 65 (6): 2265–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Meghil, M.M., O.K. Tawfik, M. Elashiry, et al. 2019. Disruption of immune homeostasis in human dendritic cells via regulation of autophagy and apoptosis by Porphyromonas gingivalis. Frontiers in Immunology 10: 2286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Herrera, D., A. Molina, K. Buhlin, et al. 2020. Periodontal diseases and association with atherosclerotic disease. Periodontology 2000 83 (1): 66–89.

    Article  PubMed  Google Scholar 

  83. Bui, F.Q., C.L.C. Almeida-da-Silva, B. Huynh, et al. 2019. Association between periodontal pathogens and systemic disease. Biomedical Journal 42 (1): 27–35.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tezal, M., M.A. Sullivan, A. Hyland, et al. 2009. Chronic periodontitis and the incidence of head and neck squamous cell carcinoma. Cancer Epidemiology, Biomarkers & Prevention 18 (9): 2406–2412.

    Article  Google Scholar 

  85. Katz, J., M.D. Onate, K.M. Pauley, et al. 2011. Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma. International Journal of Oral Science 3 (4): 209–215.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chang, C., F. Geng, X. Shi, et al. 2019. The prevalence rate of periodontal pathogens and its association with oral squamous cell carcinoma. Applied Microbiology and Biotechnology 103 (3): 1393–1404.

    Article  CAS  PubMed  Google Scholar 

  87. Cho, T.J., S.W. Wee, V.H. Woo, et al. 2014. Porphyromonas gingivalis-induced autophagy suppresses cell proliferation through G1 arrest in oral cancer cells. Archives of Oral Biology 59 (4): 370–378.

    Article  PubMed  Google Scholar 

  88. Abed, J., J.E.M. Emgard, G. Zamir, et al. 2016. Fap2 Mediates Fusobacterium nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc. Cell Host & Microbe 20 (2): 215–225.

    Article  CAS  Google Scholar 

  89. Chen, Y., Y. Chen, J. Zhang, et al. 2020. Fusobacterium nucleatum promotes metastasis in colorectal cancer by activating autophagy signaling via the upregulation of CARD3 expression. Theranostics 10 (1): 323–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yu, T.C., F.F. Guo, Y.N. Yu, et al. 2017. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170 (3): 548-563.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, Y., Y. Baba, T. Ishimoto, et al. 2021. Fusobacterium nucleatum confers chemoresistance by modulating autophagy in oesophageal squamous cell carcinoma. British Journal of Cancer 124 (5): 963–974.

    Article  CAS  PubMed  Google Scholar 

  92. Tang, B., K. Wang, Y.P. Jia, et al. 2016. Fusobacterium nucleatum-Induced Impairment of Autophagic Flux Enhances the Expression of Proinflammatory Cytokines via ROS in Caco-2 Cells. PLoS ONE 11 (11): e0165701.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Duan, C., X. Tang, W. Wang, et al. 2021. Lactobacillus rhamnosus attenuates intestinal inflammation induced by Fusobacterium nucleatum infection by restoring the autophagic flux. International Journal of Molecular Medicine 47 (1): 125–136.

    Article  CAS  PubMed  Google Scholar 

  94. Haruki, K., K. Kosumi, T. Hamada, et al. 2020. Association of autophagy status with amount of Fusobacterium nucleatum in colorectal cancer. The Journal of Pathology 250 (4): 397–408.

    Article  CAS  PubMed  Google Scholar 

  95. Beukers, N.G., G.J. van der Heijden, A.J. van Wijk, et al. 2017. Periodontitis is an independent risk indicator for atherosclerotic cardiovascular diseases among 60 174 participants in a large dental school in the Netherlands. Journal of Epidemiology and Community Health 71 (1): 37–42.

    Article  PubMed  Google Scholar 

  96. Gibson, F.C., III., H. Yumoto, Y. Takahashi, et al. 2006. Innate immune signaling and Porphyromonas gingivalis-accelerated atherosclerosis. Journal of Dental Research 85 (2): 106–121.

    Article  CAS  PubMed  Google Scholar 

  97. Hirasawa, M., and T. Kurita-Ochiai. 2018. Porphyromonas gingivalis Induces Apoptosis and Autophagy via ER Stress in Human Umbilical Vein Endothelial Cells. Mediators of Inflammation 2018: 1967506.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Durand, E., A. Scoazec, A. Lafont, et al. 2004. In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: A clue to the understanding of the mechanisms of thrombotic plaque erosion. Circulation 109 (21): 2503–2506.

    Article  CAS  PubMed  Google Scholar 

  99. Dorn, B.R., W.A. Dunn Jr., and A. Progulske-Fox. 2001. Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells. Infection and Immunity 69 (9): 5698–5708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Belanger, M., P.H. Rodrigues, W.A. Dunn Jr., et al. 2006. Autophagy: A highway for Porphyromonas gingivalis in endothelial cells. Autophagy 2 (3): 165–170.

    Article  CAS  PubMed  Google Scholar 

  101. Palasubramaniam, J., X. Wang, and K. Peter. 2019. Myocardial infarction-from atherosclerosis to thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology 39 (8): e176–e185.

    Article  CAS  PubMed  Google Scholar 

  102. Ohki, T., Y. Itabashi, T. Kohno, et al. 2012. Detection of periodontal bacteria in thrombi of patients with acute myocardial infarction by polymerase chain reaction. American Heart Journal 163 (2): 164–167.

    Article  CAS  PubMed  Google Scholar 

  103. Shiheido-Watanabe, Y., Y. Maejima, S. Nakagama, et al. 2023. Porphyromonas gingivalis, a periodontal pathogen, impairs post-infarcted myocardium by inhibiting autophagosome-lysosome fusion. International Journal of Oral Science 15 (1): 42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Furusho, H., M. Miyauchi, H. Hyogo, et al. 2013. Dental infection of Porphyromonas gingivalis exacerbates high fat diet-induced steatohepatitis in mice. Journal of Gastroenterology 48 (11): 1259–1270.

    Article  CAS  PubMed  Google Scholar 

  105. Yoneda, M., S. Naka, K. Nakano, et al. 2012. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease. Bmc Gastroenterology 12: 16.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Vidyashankar, S., R.S. Varma, and P.S. Patki. 2013. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells. Toxicology in Vitro 27 (2): 945–953.

    Article  CAS  PubMed  Google Scholar 

  107. Zaitsu, Y., M. Iwatake, K. Sato, et al. 2016. Lipid droplets affect elimination of Porphyromonas gingivalis in HepG2 cells by altering the autophagy-lysosome system. Microbes and Infection 18 (9): 565–571.

    Article  CAS  PubMed  Google Scholar 

  108. Karesvuo, P., U.K. Gursoy, P.J. Pussinen, et al. 2013. Alveolar bone loss associated with age-related macular degeneration in males. Journal of Periodontology 84 (1): 58–67.

    Article  PubMed  Google Scholar 

  109. Arjunan, P., R. Swaminathan, J. Yuan, et al. 2020. Invasion of human retinal pigment epithelial cells by Porphyromonas gingivalis leading to vacuolar/cytosolic localization and autophagy dysfunction in-vitro. Science and Reports 10 (1): 7468.

    Article  CAS  Google Scholar 

  110. He, S., Q. Zhou, B. Luo, et al. 2020. Chloroquine and 3-methyladenine attenuates periodontal inflammation and bone loss in experimental periodontitis. Inflammation 43 (1): 220–230.

    Article  CAS  PubMed  Google Scholar 

  111. Mombelli, A. 2018. Microbial colonization of the periodontal pocket and its significance for periodontal therapy. Periodontology 2000 76 (1): 85–96.

    Article  PubMed  Google Scholar 

  112. Silva, M.P., M. Feres, T.A. Sirotto, et al. 2011. Clinical and microbiological benefits of metronidazole alone or with amoxicillin as adjuncts in the treatment of chronic periodontitis: A randomized placebo-controlled clinical trial. Journal of Clinical Periodontology 38 (9): 828–837.

    Article  CAS  PubMed  Google Scholar 

  113. Rajendran, M., S. Looney, N. Singh, et al. 2019. Systemic antibiotic therapy reduces circulating inflammatory dendritic cells and Treg-Th17 plasticity in periodontitis. The Journal of Immunology 202 (9): 2690–2699.

    Article  CAS  PubMed  Google Scholar 

  114. Teughels, W., M. Feres, V. Oud, et al. 2020. Adjunctive effect of systemic antimicrobials in periodontitis therapy: A systematic review and meta-analysis. Journal of Clinical Periodontology 47 (Suppl 22): 257–281.

    Article  PubMed  Google Scholar 

  115. Feres, M., L.C. Figueiredo, G.M. Soares, et al. 2015. Systemic antibiotics in the treatment of periodontitis. Periodontology 2000 67 (1): 131–186.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82170963 to Zhengguo Cao and 82301092 to Li Ma) and the Fundamental Research Funds for the Central Universities (No. 2042023kf0146, Wuhan University).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Li Ma and Zhengguo Cao; Literature Search and Original Draft Preparation, Li Ma; Writing – Review & Editing, Li Ma and Zhengguo Cao; Supervision, Zhengguo Cao; Funding Acquisition, Li Ma and Zhengguo Cao.

Corresponding author

Correspondence to Zhengguo Cao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Cao, Z. Periodontopathogen-Related Cell Autophagy—A Double-Edged Sword. Inflammation (2024). https://doi.org/10.1007/s10753-024-02049-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02049-8

KEY WORDS

Navigation