Skip to main content

Advertisement

Log in

Loss of Dec1 prevents autophagy in inflamed periodontal ligament fibroblast

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Periodontal ligament fibroblasts (PDLFs) are integral to the homeostasis of periodontal tissue. The transcription factor Dec1 functions to modulate Porphyromonas gingivalis-induced periodontal inflammation. Here, we aimed to characterize the Dec1-mediated autophagy in PDLFs under inflammatory conditions. Human PDLFs were subjected to an inflammatory environment using P. gingivalis Lipopolysaccaride (LPS) along with Dec1 siRNA in vitro. Quantitative real-time polymerase chain reaction and Western blot analyses were used to evaluate the expression levels of autophagy-related genes and their upstream AKT/mTOR signaling pathways. An experimental P. gingivalis-treated Dec1 knockout (Dec1KO) mouse model was used to confirm the expression of autophagy in PDLFs in vivo. Treatment with P. gingivalis LPS induced the expression of ATG5, Beclin1 and microtubule-associated protein 1 light chain 3 (LC3) and elevated the expression of pro-inflammatory cytokine IL-1β and Dec1 in human PDLFs. Knockdown of Dec1 partly reversed the detrimental influences of LPS on these autophagy markers in human PDLFs. The inhibition of autophagy with Dec1 siRNA suppressed the inflammatory effect of AKT/mTOR signaling pathways following treatment with P. gingivalis LPS. P. gingivalis-treated Dec1KO mice partly reduced autophagy expression. These findings suggest that a Dec1 deficiency can modulate the interaction between autophagy and inflammation in PDLFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and analyzed in this study are available from the corresponding author (chocolate_yan@yeah.net) on reasonable request.

References

  1. El-Awady AR, Messer RL, Gamal AY, Sharawy MM, Wenger KH, Lapp CA (2010) Periodontal ligament fibroblasts sustain destructive immune modulators of chronic periodontitis. J Periodontol 81:1324–1335

    Article  CAS  Google Scholar 

  2. Zhang J, Wang CM, Zhang P, Wang X, Chen J, Yang J, Lu W, Zhou W, Yuan W, Feng Y (2016) Expression of programmed death 1 ligand 1 on periodontal tissue cells as a possible protective feedback mechanism against periodontal tissue destruction. Mol Med Rep 13:2423–2430

    Article  CAS  Google Scholar 

  3. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  CAS  Google Scholar 

  4. Liu J, Ruan J, Weir MD, Ren K, Schneider A, Wang P, Oates TW, Chang X, Xu HHK (2019) Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells. Cells 8:537

    Article  CAS  Google Scholar 

  5. Onizuka S, Iwata T (2019) Application of periodontal ligament-derived multipotent mesenchymal stromal cell sheets for periodontal regeneration. Int J Mol Sci 20:2796

    Article  CAS  Google Scholar 

  6. Bai Y, Wei Y, Wu L, Wei J, Wang X (2016) C/EBP beta mediates endoplasmic reticulum stress regulated inflammatory response and extracellular matrix degradation in LPS-stimulated human periodontal ligament cells. Int J Mol Sci 17:385

    Article  Google Scholar 

  7. Benakanakere M, Kinane DF (2012) Innate cellular responses to the periodontal biofilm. Front Oral Biol 15:41–55

    Article  Google Scholar 

  8. Matthews BD, Overby DR, Mannix R, Ingber DE (2006) Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci 119:508–518

    Article  CAS  Google Scholar 

  9. Franke RP, Gräfe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D (1984) Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307:648–649

    Article  CAS  Google Scholar 

  10. Lapaquette P, Guzzo J, Bretillon L, Bringer MA (2015) Cellular and molecular connections between autophagy and inflammation. Mediators Inflamm 2015:398483

    Article  Google Scholar 

  11. Bullon P, Cordero MD, Quiles JL, Ramirez-Tortosa MC, Gonzalez-Alonso A, Alfonsi S, García-Marín R, Miguel MD, Battino M (2012) Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation. BMC Med 10:122

    Article  Google Scholar 

  12. An Y, Liu W, Xue P, Zhang Y, Wang Q, Jin Y (2016) Increased autophagy is required to protect periodontal ligament stem cells from apoptosis in inflammatory microenvironment. J Clin Periodontol 43:618–625

    Article  Google Scholar 

  13. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  Google Scholar 

  14. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335

    Article  CAS  Google Scholar 

  15. Ba RQ, Liu J, Fan XJ, Jin GL, Huang BG, Liu MW, Yang JS (2020) Effects of miR-199a on autophagy by targeting glycogen synthase kinase 3β to activate PTEN/AKT/mTOR signaling in an MPP +in vitro model of Parkinson’s disease. Neurol Res 42:308–318

    Article  CAS  Google Scholar 

  16. Bhawal UK, Ito Y, Tanimoto K, Sato F, Fujimoto K, Kawamoto T, Sasahira T, Hamada N, Kuniyasu H, Arakawa H, Kato Y, Abiko Y (2012) IL-1β-mediated up-regulation of DEC1 in human gingiva cells via the Akt pathway. J Cell Biochem 113:3246–3253

    Article  CAS  Google Scholar 

  17. Martínez-Llordella M, Esensten JH, Bailey-Bucktrout SL, Lipsky RH, Marini A, Chen J, Mughal M, Mattson MP, Taub DD, Bluestone JA (2013) CD28-inducible transcription factor DEC1 is required for efficient autoreactive CD4+ T cell response. J Exp Med 210:1603–1619

    Article  Google Scholar 

  18. Jiang X, Tian F, Du Y, Copeland NG, Jenkins NA, Tessarollo L et al (2008) BHLHB2 controls Bdnf promoter 4 activity and neuronal excitability. J Neurosci 28:1118–1130

    Article  CAS  Google Scholar 

  19. Miyazaki K, Miyazaki M, Guo Y, Yamasaki N, Kanno M, Honda Z, Oda H, Kawamoto H, Honda H (2010) The role of the basic helix-loop-helix transcription factor Dec1 in the regulatory T cells. J Immunol 185:7330–7339

    Article  CAS  Google Scholar 

  20. Zhang F, Suzuki M, Kim IS, Kobayashi R, Hamada N, Sato F, Bhawal UK (2018) Transcription factor DEC1 is required for maximal experimentally induced periodontal inflammation. J Periodontal Res 53:883–893

    Article  CAS  Google Scholar 

  21. Inchingolo F, Martelli FS, Isacco CG, Borsami E, Cantore S, Corcioli F et al (2020) Chronic periodontitis and immunity, towards the implementation of a personalized medicine: a translational research on gene single nucleotide polymorphisms (SNPs) linked to chronic oral dysbiosis in 96 caucasian patients. Biomedicines 8:115

    Article  CAS  Google Scholar 

  22. Ballini A, Dipalma G, Isacco CG, Boccellino M, Domenico MD, Santacroce L et al (2020) Oral microbiota and immune system crosstalk: a translational research. Biology 9:131

    Article  CAS  Google Scholar 

  23. Isacco CG, Ballini A, De Vito D, Diem Nguyen KC, Cantore S, Bottalico L (2020) Rebalance the oral microbiota as efficacy tool in endocrine, metabolic, and immune disorders. Endocr Metab Immune Disord Drug Targets https://www.eurekaselect.com/184302/article. Accessed 29 July 2020.

  24. Memmert S, Damanaki A, Nogueira AVB, Eick S, Nokhbehsaim M, Papadopoulou AK et al (2017) Role of Cathepsin S in periodontal inflammation and infection. Mediators Inflamm 2017:4786170

    Article  CAS  Google Scholar 

  25. Ge Y, Huang M, Yao YM (2018) Autophagy and proinflammatory cytokines: interactions and clinical implications. Cytokine Growth Factor Rev 43:38–46

    Article  CAS  Google Scholar 

  26. Scott RC, Juhász G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17:1–11

    Article  CAS  Google Scholar 

  27. Ye J, Jiang Z, Chen X, Liu M, Li J, Liu N (2017) The role of autophagy in proinflammatory responses of microglia activation via mitochondrial reactive oxygen species in vitro. J Neurochem 142:215–230

    Article  CAS  Google Scholar 

  28. Liu J, Wang X, Zheng M, Luan Q (2018) Lipopolysaccharide from Porphyromonas gingivalis promotes autophagy of human gingival fibroblasts through the PI3K/Akt/mTOR signaling pathway. Life Sci 211:133–139

    Article  CAS  Google Scholar 

  29. Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1:84–91

    Article  CAS  Google Scholar 

  30. Maejima Y, Isobe M, Sadoshima J (2016) Regulation of autophagy by Beclin 1 in the heart. J Mol Cell Cardiol 95:19–25

    Article  CAS  Google Scholar 

  31. Veskovic M, Mladenovic D, Milenkovic M, Tosic J, Borozan S, Gopcevic K, Labudovic-Borovic M, Dragutinovic V, Vucevic D, Jorgacevic B, Isakovic A, Trajkovic V, Radosavljevic T (2019) Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease. Eur J Pharmacol 848:39–48

    Article  CAS  Google Scholar 

  32. Yu X, Long YC, Shen HM (2015) Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy 11:1711–1728

    Article  CAS  Google Scholar 

  33. Munson MJ, Ganley IG (2015) MTOR, PIK3C3, and autophagy: signaling the beginning from the end. Autophagy 11:2375–2376

    Article  CAS  Google Scholar 

  34. Li P, Shi J, He Q, Hu Q, Wang YY, Zhang LJ, Chan WT, Chen WX (2015) Streptococcus pneumoniae induces autophagy through the inhibition of the PI3K-I/ akt/mTOR pathway and ROS hypergeneration in A549 cells. PLoS ONE 10:e122753

    Google Scholar 

  35. Li Y, Lu L, Luo N, Wang Y, Gao H (2017) Inhibition of PI3K/AKt/mTOR signaling pathway protects against d-galactosamine/lipopolysaccharide-induced acute liver failure by chaperone-mediated autophagy in rats. Biomed Pharmacother 92:544–553

    Article  CAS  Google Scholar 

  36. White E, Karp C, Strohecker AM, Guo Y, Mathew R (2010) Role of autophagy in suppression of inflammation and cancer. Curr Opin Cell Biol 22:212–217

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Yukio Kato for providing Dec1KO mice, Dr. Toyama and Dr. Sato for the P. gingivalis treatment and the staff of the animal facility for care of the mice. We thank Dr. Fujita for technical assistance.

Funding

This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by a Nihon University Multidisciplinary Research Grant for 2018.

Author information

Authors and Affiliations

Authors

Contributions

SO, XL, FZ and UKB performed the experiments, XL and UKB wrote the manuscript. SO, XL, FZ and UKB conceived the study and analyzed the data. FZ, NH, YO and UKB designed the animal experiments. NT, ISK, CC, LZ, MM and YL supervised interpretation of the data and critical review of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaoyan Li or Ujjal K. Bhawal.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

All procedures were performed in compliance with the standard principles and guidelines for the care and use of laboratory animals of Animal Ethics Committee of Kanagawa Dental University (Approval No. 12–042).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2021_6162_MOESM1_ESM.tif

Fig. S1 Expression of hypoxia and ROS related proteins was also decreased in Dec1 KO mice compared to WT mice (TIF 23213 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oka, S., Li, X., Zhang, F. et al. Loss of Dec1 prevents autophagy in inflamed periodontal ligament fibroblast. Mol Biol Rep 48, 1423–1431 (2021). https://doi.org/10.1007/s11033-021-06162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06162-x

Keywords

Navigation