Skip to main content
Log in

ROS-Induced Gingival Fibroblast Senescence: Implications in Exacerbating Inflammatory Responses in Periodontal Disease

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Periodontal disease is the pathological outcome of the overwhelming inflammation in periodontal tissue. Cellular senescence has been associated with chronic inflammation in several diseases. However, the role of cellular senescence in the pathogenesis of periodontal disease remained unclear. This study aimed to investigate the role and the mechanism of cellular senescence in periodontal disease. Using single-cell RNA sequencing, we first found the upregulated level of cellular senescence in fibroblasts and endothelial cells from inflamed gingival tissue. Subsequently, human gingival fibroblasts isolated from healthy and inflamed gingival tissues were labeled as H-GFs and I-GFs, respectively. Compared to H-GFs, I-GFs exhibited a distinct cellular senescence phenotype, including an increased proportion of senescence-associated β-galactosidase (SA-β-gal) positive cells, enlarged cell morphology, and significant upregulation of p16INK4A expression. We further observed increased cellular reactive oxygen species (ROS) activity, mitochondrial ROS, and DNA damage of I-GFs. These phenotypes could be reversed by ROS scavenger NAC, which suggested the cause of cellular senescence in I-GFs. The migration and proliferation assay showed the decreased activity of I-GFs while the gene expression of senescence-associated secretory phenotype (SASP) factors such as IL-1β, IL-6, TGF-β, and IL-8 was all significantly increased. Finally, we found that supernatants of I-GF culture induced more neutrophil extracellular trap (NET) formation and drove macrophage polarization toward the CD86-positive M1 pro-inflammatory phenotype. Altogether, our findings implicate that, in the inflamed gingiva, human gingival fibroblasts acquire a senescent phenotype due to oxidative stress-induced DNA and mitochondrial damage, which in turn activate neutrophils and macrophages through the secretion of SASP factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Sequence data that support the findings of this study will be made available on request.

References

  1. Hernandez-Segura, A., J. Nehme, and M. Demaria. 2018. Hallmarks of cellular senescence. Trends in Cell Biology 28: 436–453.

    Article  CAS  PubMed  Google Scholar 

  2. Yue, Z., L. Nie, P. Zhao, N. Ji, G. Liao, and Q. Wang. 2022. Senescence-associated secretory phenotype and its impact on oral immune homeostasis. Frontiers in Immunology 13: 1019313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gomez, C.R., V. Nomellini, D.E. Faunce, and E.J. Kovacs. 2008. Innate immunity and aging. Experimental Gerontology 43: 718–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hajishengallis, G. 2022. Interconnection of periodontal disease and comorbidities: Evidence, mechanisms, and implications. Periodontology 2000 (89): 9–18.

    Article  Google Scholar 

  5. Salminen, A. 2020. Activation of immunosuppressive network in the aging process. Ageing Research Reviews 57: 100998.

    Article  CAS  PubMed  Google Scholar 

  6. Singh, T., and A.B. Newman. 2011. Inflammatory markers in population studies of aging. Ageing Research Reviews 10: 319–329.

    Article  CAS  PubMed  Google Scholar 

  7. Rea, I.M., D.S. Gibson, V. McGilligan, S.E. McNerlan, H.D. Alexander, and O.A. Ross. 2018. Age and age-related diseases: Role of inflammation triggers and cytokines. Frontiers in Immunology 9: 586.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tatsumi, M., M. Yanagita, M. Yamashita, S. Hasegawa, K. Ikegami, M. Kitamura, and S. Murakami. 2021. Long-term exposure to cigarette smoke influences characteristics in human gingival fibroblasts. Journal of Periodontal Research 56: 951–963.

    Article  CAS  PubMed  Google Scholar 

  9. Baima, G., M. Romandini, F. Citterio, F. Romano, and M. Aimetti. 2022. Periodontitis and accelerated biological aging: A geroscience approach. Journal of Dental Research 101: 125–132.

    Article  CAS  PubMed  Google Scholar 

  10. Kumari, R., and P. Jat. 2021. Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype. Frontiers in Cell and Developmental Biology 9: 645593.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Coppé, J.P., C.K. Patil, F. Rodier, Y. Sun, D.P. Muñoz, J. Goldstein, P.S. Nelson, P.Y. Desprez, and J. Campisi. 2008. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biology 6: 2853–2868.

    Article  PubMed  Google Scholar 

  12. Aquino-Martinez, R., B.A. Eckhardt, J.L. Rowsey, D.G. Fraser, S. Khosla, J.N. Farr, and D.G. Monroe. 2021. Senescent cells exacerbate chronic inflammation and contribute to periodontal disease progression in old mice. Journal of Periodontology 92: 1483–1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Di Micco, R., V. Krizhanovsky, D. Baker, and F. d’Adda di Fagagna. 2021. Cellular senescence in ageing: From mechanisms to therapeutic opportunities. Nature Reviews Molecular Cell Biology 22: 75–95.

    Article  PubMed  Google Scholar 

  14. Ikegami, K., M. Yamashita, M. Suzuki, T. Nakamura, K. Hashimoto, J. Kitagaki, M. Yanagita, M. Kitamura, and S. Murakami. 2023. Cellular senescence with SASP in periodontal ligament cells triggers inflammation in aging periodontal tissue. Aging (Albany NY) 15: 1279–1305.

    CAS  PubMed  Google Scholar 

  15. An, J.Y., K.A. Kerns, A. Ouellette, L. Robinson, H.D. Morris, C. Kaczorowski, S.I. Park, T. Mekvanich, A. Kang, J.S. McLean, T.C. Cox, and M. Kaeberlein. 2020. Rapamycin rejuvenates oral health in aging mice. eLife 9: e54318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moiseeva, O., X. Deschênes-Simard, E. St-Germain, S. Igelmann, G. Huot, A.E. Cadar, V. Bourdeau, M.N. Pollak, and G. Ferbeyre. 2013. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 12: 489–498.

    Article  CAS  PubMed  Google Scholar 

  17. Demaria, M., N. Ohtani, S.A. Youssef, F. Rodier, W. Toussaint, J.R. Mitchell, R.M. Laberge, J. Vijg, H. Van Steeg, M.E. Dollé, J.H. Hoeijmakers, A. de Bruin, E. Hara, et al. 2014. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Developmental Cell 31: 722–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jurdzinski, K.T., J. Potempa, and A.M. Grabiec. 2020. Epigenetic regulation of inflammation in periodontitis: Cellular mechanisms and therapeutic potential. Clinical Epigenetics 12: 186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wielento, A., K.B. Lagosz-Cwik, J. Potempa, and A.M. Grabiec. 2023. The role of gingival fibroblasts in the pathogenesis of periodontitis. Journal of Dental Research 102: 489–496.

    Article  CAS  PubMed  Google Scholar 

  20. Davidson, S., M. Coles, T. Thomas, G. Kollias, B. Ludewig, S. Turley, M. Brenner, and C.D. Buckley. 2021. Fibroblasts as immune regulators in infection, inflammation and cancer. Nature Reviews Immunology 21: 704–717.

    Article  CAS  PubMed  Google Scholar 

  21. Domon, H., K. Tabeta, T. Nakajima, and K. Yamazaki. 2014. Age-related alterations in gene expression of gingival fibroblasts stimulated with Porphyromonas gingivalis. Journal of Periodontal Research 49: 536–543.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, J., X. Wang, M. Zheng, and Q. Luan. 2023. Oxidative stress in human gingival fibroblasts from periodontitis versus healthy counterparts. Oral Diseases 29: 1214–1225.

    Article  PubMed  Google Scholar 

  23. Williams, D.W., T. Greenwell-Wild, L. Brenchley, N. Dutzan, A. Overmiller, A.P. Sawaya, S. Webb, D. Martin, G. Hajishengallis, K. Divaris, M. Morasso, M. Haniffa, and N.M. Moutsopoulos. 2021. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell 184: 4090-4104.e4015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chu, Z., Q. Huang, K. Ma, X. Liu, W. Zhang, S. Cui, Q. Wei, H. Gao, W. Hu, Z. Wang, S. Meng, L. Tian, H. Li, et al. 2023. Novel neutrophil extracellular trap-related mechanisms in diabetic wounds inspire a promising treatment strategy with hypoxia-challenged small extracellular vesicles. Bioactive Materials 27: 257–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shao, Y., Z. Guo, Y. Yang, L. Liu, J. Huang, Y. Chen, L. Li, and B. Sun. 2022. Neutrophil extracellular traps contribute to myofibroblast differentiation and scar hyperplasia through the Toll-like receptor 9/nuclear factor Kappa-B/interleukin-6 pathway. Burns & Trauma 10: tkac044.

    Article  Google Scholar 

  26. Chrysanthopoulou, A., I. Mitroulis, E. Apostolidou, S. Arelaki, D. Mikroulis, T. Konstantinidis, E. Sivridis, M. Koffa, A. Giatromanolaki, D.T. Boumpas, K. Ritis, and K. Kambas. 2014. Neutrophil extracellular traps promote differentiation and function of fibroblasts. Journal of Pathology 233: 294–307.

    Article  CAS  PubMed  Google Scholar 

  27. Tzach-Nahman, R., R. Nashef, O. Fleissig, A. Palmon, L. Shapira, A. Wilensky, and G. Nussbaum. 2017. Oral fibroblasts modulate the macrophage response to bacterial challenge. Scientific Reports 7: 11516.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Page, R.C., and P.I. Eke. 2007. Case definitions for use in population-based surveillance of periodontitis. Journal of Periodontology 78: 1387–1399.

    Article  PubMed  Google Scholar 

  29. Häkkinen, L., and H. Larjava. 1992. Characterization of fibroblast clones from periodontal granulation tissue in vitro. Journal of Dental Research 71: 1901–1907.

    Article  PubMed  Google Scholar 

  30. Saha, C., J. Li, X. Sun, X. Liu, and G. Huang. 2023. A novel role of Fas in delaying cellular senescence. Heliyon 9: e13451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Avelar, R.A., J.G. Ortega, R. Tacutu, E.J. Tyler, D. Bennett, P. Binetti, A. Budovsky, K. Chatsirisupachai, E. Johnson, A. Murray, S. Shields, D. Tejada-Martinez, D. Thornton, et al. 2020. A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biology 21: 91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chatsirisupachai, K., D. Palmer, S. Ferreira, and J.P. de Magalhães. 2019. A human tissue-specific transcriptomic analysis reveals a complex relationship between aging, cancer, and cellular senescence. Aging Cell 18: e13041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schopohl, P., P. Grüneberg, and M.F. Melzig. 2016. The influence of harpagoside and harpagide on TNFα-secretion and cell adhesion molecule mRNA-expression in IFNγ/LPS-stimulated THP-1 cells. Fitoterapia 110: 157–165.

    Article  CAS  PubMed  Google Scholar 

  34. Dave, J.R., S.S. Chandekar, S. Behera, K.U. Desai, P.M. Salve, N.B. Sapkal, S.T. Mhaske, A.M. Dewle, P.S. Pokare, M. Page, A. Jog, P.A. Chivte, R.K. Srivastava, et al. 2022. Human gingival mesenchymal stem cells retain their growth and immunomodulatory characteristics independent of donor age. Science Advances 8: eabm6504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei, X., S. Zou, Z. Xie, Z. Wang, N. Huang, Z. Cen, Y. Hao, C. Zhang, Z. Chen, F. Zhao, Z. Hu, X. Teng, Y. Gui, et al. 2022. EDIL3 deficiency ameliorates adverse cardiac remodelling by neutrophil extracellular traps (NET)-mediated macrophage polarization. Cardiovascular Research 118: 2179–2195.

    Article  CAS  PubMed  Google Scholar 

  36. Bloom, S.I., M.T. Islam, L.A. Lesniewski, and A.J. Donato. 2023. Mechanisms and consequences of endothelial cell senescence. Nature Reviews Cardiology 20: 38–51.

    Article  PubMed  Google Scholar 

  37. Muñoz-Espín, D., and M. Serrano. 2014. Cellular senescence: From physiology to pathology. Nature Reviews Molecular Cell Biology 15: 482–496.

    Article  PubMed  Google Scholar 

  38. Silva, L.M., A.D. Doyle, T. Greenwell-Wild, N. Dutzan, C.L. Tran, L. Abusleme, L.J. Juang, J. Leung, E.M. Chun, A.G. Lum, C.S. Agler, C.E. Zuazo, M. Sibree, et al. 2021. Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier. Science 374: eabl5450.

    Article  CAS  PubMed  Google Scholar 

  39. Okamura, D.M., and J. Himmelfarb. 2009. Tipping the redox balance of oxidative stress in fibrogenic pathways in chronic kidney disease. Pediatric Nephrology 24: 2309–2319.

    Article  PubMed  Google Scholar 

  40. Tchkonia, T., Y. Zhu, J. van Deursen, J. Campisi, and J.L. Kirkland. 2013. Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. Journal of Clinical Investigation 123: 966–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ara, T., K. Kurata, K. Hirai, T. Uchihashi, T. Uematsu, Y. Imamura, K. Furusawa, S. Kurihara, and P.L. Wang. 2009. Human gingival fibroblasts are critical in sustaining inflammation in periodontal disease. Journal of Periodontal Research 44: 21–27.

    Article  CAS  PubMed  Google Scholar 

  42. Van Dyke, T.E., and C.N. Serhan. 2003. Resolution of inflammation: A new paradigm for the pathogenesis of periodontal diseases. Journal of Dental Research 82: 82–90.

    Article  PubMed  Google Scholar 

  43. Kondo, T., A. Gleason, H. Okawa, A. Hokugo, and I. Nishimura. 2023. Mouse gingival single-cell transcriptomic atlas identified a novel fibroblast subpopulation activated to guide oral barrier immunity in periodontitis. eLife 12: RP88183.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Han, N., Y. Liu, J. Du, J. Xu, L. Guo, and Y. Liu. 2023. Regulation of the host immune microenvironment in periodontitis and periodontal bone remodeling. International Journal of Molecular Sciences 24: 3158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xing, L., W. Dong, Y. Chen, W. Dai, X. Xiao, Z. Liu, X. Zhang, D. Bai, and H. Xu. 2023. Fibroblast ferroptosis is involved in periodontitis-induced tissue damage and bone loss. International Immunopharmacology 114: 109607.

    Article  CAS  PubMed  Google Scholar 

  46. Elsayed, R., M. Elashiry, Y. Liu, A. El-Awady, M. Hamrick, and C.W. Cutler. 2021. Porphyromonas gingivalis provokes exosome secretion and paracrine immune senescence in bystander dendritic cells. Frontiers in Cellular and Infection Microbiology 11: 669989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Holliday, R.S., J. Campbell, and P.M. Preshaw. 2019. Effect of nicotine on human gingival, periodontal ligament and oral epithelial cells. A systematic review of the literature. Journal of Dentistry 86: 81–88.

    Article  CAS  PubMed  Google Scholar 

  48. Sonobe, S., S. Takahashi, S. Hatano, and K. Kuroda. 1986. Phosphorylation of Amoeba G-actin and its effect on actin polymerization. Journal of Biological Chemistry 261: 14837–14843.

    Article  CAS  PubMed  Google Scholar 

  49. Chen, Y., H. Wang, Q. Yang, W. Zhao, Y. Chen, Q. Ni, W. Li, J. Shi, W. Zhang, L. Li, Y. Xu, H. Zhang, D. Miao, et al. 2022. Single-cell RNA landscape of the osteoimmunology microenvironment in periodontitis. Theranostics 12: 1074–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Herranz, N., and J. Gil. 2018. Mechanisms and functions of cellular senescence. Journal of Clinical Investigation 128: 1238–1246.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Paez, J., R. Hernandez, J. Espinoza, L. Rojas, C.E. Martinez, N. Tobar, J. Martinez, and P.C. Smith. 2020. Uncoupled inflammatory, proliferative, and cytoskeletal responses in senescent human gingival fibroblasts. Journal of Periodontal Research 55: 432–440.

    Article  CAS  PubMed  Google Scholar 

  52. Serrano, M., A.W. Lin, M.E. McCurrach, D. Beach, and S.W. Lowe. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  53. Coppe, J.P., P.Y. Desprez, A. Krtolica, and J. Campisi. 2010. The senescence-associated secretory phenotype: The dark side of tumor suppression. Annual Review of Phytopathology 5: 99–118.

    Article  CAS  Google Scholar 

  54. Cheng, R., D. Choudhury, C. Liu, S. Billet, T. Hu, and N.A. Bhowmick. 2015. Gingival fibroblasts resist apoptosis in response to oxidative stress in a model of periodontal diseases. Cell Death Discovery 1: 15046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gorąca, A., H. Huk-Kolega, P. Kleniewska, A. Piechota-Polańczyk, and B. Skibska. 2013. Effects of lipoic acid on spleen oxidative stress after LPS administration. Pharmacological Reports 65: 179–186.

    Article  PubMed  Google Scholar 

  56. Maruyama, T., T. Tomofuji, Y. Endo, K. Irie, T. Azuma, D. Ekuni, N. Tamaki, T. Yamamoto, and M. Morita. 2011. Supplementation of green tea catechins in dentifrices suppresses gingival oxidative stress and periodontal inflammation. Archives of Oral Biology 56: 48–53.

    Article  CAS  PubMed  Google Scholar 

  57. Sinha, K., J. Das, P.B. Pal, and P.C. Sil. 2013. Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis. Archives of Toxicology 87: 1157–1180.

    Article  CAS  PubMed  Google Scholar 

  58. Naruishi, K., and T. Nagata. 2018. Biological effects of interleukin-6 on gingival fibroblasts: Cytokine regulation in periodontitis. Journal of Cellular Physiology 233: 6393–6400.

    Article  CAS  PubMed  Google Scholar 

  59. Morandini, A.C., C.R. Sipert, T.H. Gasparoto, S.L. Greghi, E. Passanezi, M.L. Rezende, and A. P. Sant’ana, A. P. Campanelli, G. P. Garlet, and C. F. Santos. 2010. Differential production of macrophage inflammatory protein-1alpha, stromal-derived factor-1, and IL-6 by human cultured periodontal ligament and gingival fibroblasts challenged with lipopolysaccharide from P. gingivalis. Journal of Periodontology 81: 310–317.

    Article  CAS  PubMed  Google Scholar 

  60. Boström, E.A., E. Kindstedt, R. Sulniute, P. Palmqvist, M. Majster, C.K. Holm, S. Zwicker, R. Clark, S. Önell, I. Johansson, U.H. Lerner, and P. Lundberg. 2015. Increased eotaxin and MCP-1 levels in serum from individuals with periodontitis and in human gingival fibroblasts exposed to pro-inflammatory cytokines. PLoS ONE 10: e0134608.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liang, S., K.B. Hosur, H. Domon, and G. Hajishengallis. 2010. Periodontal inflammation and bone loss in aged mice. Journal of Periodontal Research 45: 574–578.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Miller, C.S., X. Ding, D.R. Dawson 3rd., and J.L. Ebersole. 2021. Salivary biomarkers for discriminating periodontitis in the presence of diabetes. Journal of Clinical Periodontology 48: 216–225.

    Article  CAS  PubMed  Google Scholar 

  63. Schalper, K.A., M. Carleton, M. Zhou, T. Chen, Y. Feng, S.P. Huang, A.M. Walsh, V. Baxi, D. Pandya, T. Baradet, D. Locke, Q. Wu, T.P. Reilly, et al. 2020. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nature Medicine 26: 688–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liao, Y., Q. Yan, T. Cheng, H. Yao, Y. Zhao, D. Fu, Y. Ji, and B. Shi. 2023. Sulforaphene inhibits periodontitis through regulating macrophage polarization via upregulating dendritic cell immunoreceptor. Journal of Agricultural and Food Chemistry 71: 15538–15552.

    Article  CAS  PubMed  Google Scholar 

  65. Li, C., T. Chen, J. Liu, Y. Wang, C. Zhang, L. Guo, D. Shi, T. Zhang, X. Wang, and J. Li. 2023. FGF19-induced inflammatory CAF promoted neutrophil extracellular trap formation in the liver metastasis of colorectal cancer. Advanced Science (Weinheim, Germany) 10: e2302613.

    Google Scholar 

  66. Qiu, W., Z. Wang, Z. Chen, Q. Sun, H. Wu, Z. Chen, K. Luan, Z. Liu, D. Ding, Q. Tu, J. Chen, B. Wu, and F. Fang. 2023. The adiponectin receptor agonist AdipoAI attenuates periodontitis in diabetic rats by inhibiting gingival fibroblast-induced macrophage migration. British Journal of Pharmacology 180: 2436–2451.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 82071095 and 32370816). The authors assert that AI techniques should be utilized solely to enhance readability and language rather than replace critical research tasks.

Author information

Authors and Affiliations

Authors

Contributions

S.G. and L.F.: conceptualization, formal analysis, investigation, project administration, validation, visualization, and writing—original draft. C.Y. and W.S.: data curation, methodology, and resources. Q.S., L.C., and T.X.: investigation, resources, and validation. M.W. and H.X.: conceptualization, data curation, formal analysis, funding acquisition, project administration, supervision, and writing—review and editing.

Corresponding authors

Correspondence to Min Wang or Haibin Xia.

Ethics declarations

Ethics Approval

This study was reviewed and approved by the Ethics Committee of Hospital of Stomatology Wuhan University (No. 2023/A52), and conducted in accordance with the revised Declaration of Helsinki 2013.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 199 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Fu, L., Yin, C. et al. ROS-Induced Gingival Fibroblast Senescence: Implications in Exacerbating Inflammatory Responses in Periodontal Disease. Inflammation (2024). https://doi.org/10.1007/s10753-024-02014-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02014-5

KEY WORDS

Navigation