Skip to main content

Advertisement

Log in

Tipping the redox balance of oxidative stress in fibrogenic pathways in chronic kidney disease

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Patients with moderate to advanced chronic kidney disease or end-stage renal disease have a greatly increased cardiovascular risk that cannot be explained entirely by traditional cardiovascular risk factors. An increase in oxidative stress and inflammation have been proposed as nontraditional cardiovascular risk factors in this patient population. Oxidative stress reflects the redox balance between oxidant generation and antioxidant mechanisms. The generation of reactive oxygen species is not simply a random process that oxidizes nearby macromolecules, but, in many instances, the oxidants target particular amino acid residues or lipid moieties. Oxidant mechanisms are now recognized to be intimately involved in cell signaling and to be vital components of the immune response. This is equally true for antioxidant mechanisms as well. In the progression of chronic kidney disease, the redox balance is not in equilibrium and is tipped toward oxidation, resulting in the dysregulation of cellular process and subsequent tissue injury. In this review we discuss the major oxidant and antioxidant pathways and the biomarkers to assess redox status. We also review the data linking the pathogenesis of oxidative stress, inflammation, and the progressive loss of kidney function in chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McDonald SP, Craig JC (2004) Long-term survival of children with end-stage renal disease. N Engl J Med 350:2654–2662

    CAS  PubMed  Google Scholar 

  2. Levey AS, Beto JA, Coronado BE, Eknoyan G, Foley RN, Kasiske BL, Klag MJ, Mailloux LU, Manske CL, Meyer KB, Parfrey PS, Pfeffer MA, Wenger NK, Wilson PW, Wright JT Jr (1998) Controlling the epidemic of cardiovascular disease in chronic renal disease: what do we know? What do we need to learn? Where do we go from here? National Kidney Foundation Task Force on Cardiovascular Disease. Am J Kidney Dis 32:853–906

    CAS  PubMed  Google Scholar 

  3. Cheung AK, Sarnak MJ, Yan G, Dwyer JT, Heyka RJ, Rocco MV, Teehan BP, Levey AS (2000) Atherosclerotic cardiovascular disease risks in chronic hemodialysis patients. Kidney Int 58:353–362

    CAS  PubMed  Google Scholar 

  4. Mitsnefes MM (2008) Cardiovascular complications of pediatric chronic kidney disease. Pediatr Nephrol 23:27–39

    PubMed  PubMed Central  Google Scholar 

  5. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    CAS  PubMed  Google Scholar 

  6. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    CAS  PubMed  Google Scholar 

  7. Geiszt M, Leto TL (2004) The Nox family of NAD(P) H oxidases: host defense and beyond. J Biol Chem 279:51715–51718

    CAS  PubMed  Google Scholar 

  8. Terada LS (2006) Specificity in reactive oxidant signaling: think globally, act locally. J Cell Biol 174:615–623

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Segal BH, Davidson BA, Hutson AD, Russo TA, Holm BA, Mullan B, Habitzruther M, Holland SM, Knight PR 3rd (2007) Acid aspiration-induced lung inflammation and injury are exacerbated in NADPH oxidase-deficient mice. Am J Physiol Lung Cell Mol Physiol 292:L760–L768

    CAS  PubMed  Google Scholar 

  10. Gao XP, Standiford TJ, Rahman A, Newstead M, Holland SM, Dinauer MC, Liu QH, Malik AB (2002) Role of NADPH oxidase in the mechanism of lung neutrophil sequestration and microvessel injury induced by Gram-negative sepsis: studies in p47phox−/− and gp91phox−/− mice. J Immunol 168:3974–3982

    CAS  PubMed  Google Scholar 

  11. Morgenstern DE, Gifford MA, Li LL, Doerschuk CM, Dinauer MC (1997) Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. J Exp Med 185:207–218

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kassim SY, Fu X, Liles WC, Shapiro SD, Parks WC, Heinecke JW (2005) NADPH oxidase restrains the matrix metalloproteinase activity of macrophages. J Biol Chem 280:30201–30205

    CAS  PubMed  Google Scholar 

  13. Snelgrove RJ, Edwards L, Williams AE, Rae AJ, Hussell T (2006) In the absence of reactive oxygen species, T cells default to a Th1 phenotype and mediate protection against pulmonary Cryptococcus neoformans infection. J Immunol 177:5509–5516

    CAS  PubMed  Google Scholar 

  14. Doughan AK, Harrison DG, Dikalov SI (2008) Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102:488–496

    CAS  PubMed  Google Scholar 

  15. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88:E14–E22

    CAS  PubMed  Google Scholar 

  16. Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG (2002) Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511–515

    CAS  PubMed  Google Scholar 

  17. McNally JS, Davis ME, Giddens DP, Saha A, Hwang J, Dikalov S, Jo H, Harrison DG (2003) Role of xanthine oxidoreductase and NAD(P) H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol 285:H2290–H2297

    CAS  PubMed  Google Scholar 

  18. Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, Karwande SV, Stringham JC, Bull DA, Gleich M, Kennedy TP, Hoidal JR (2006) Transforming growth factor-β1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 290:L661–L673

    CAS  PubMed  Google Scholar 

  19. Waghray M, Cui Z, Horowitz JC, Subramanian IM, Martinez FJ, Toews GB, Thannickal VJ (2005) Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. FASEB J 19:854–856

    CAS  PubMed  Google Scholar 

  20. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620–1624

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Okamura DM, Lopez-Guisa JM, Koelsch K, Collins S, Eddy AA (2007) Atherogenic scavenger receptor modulation in the tubulointerstitium in response to chronic renal injury. Am J Physiol Renal Physiol 293:F575–F585

    CAS  PubMed  Google Scholar 

  22. Malle E, Woenckhaus C, Waeg G, Esterbauer H, Grone EF, Grone HJ (1997) Immunological evidence for hypochlorite-modified proteins in human kidney. Am J Pathol 150:603–615

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Djamali A, Vidyasagar A, Adulla M, Hullett D, Reese S (2009) Nox-2 is a modulator of fibrogenesis in kidney allografts. Am J Transplant 9:74–82

    CAS  PubMed  Google Scholar 

  24. Himmelfarb J, McMenamin ME, Loseto G, Heinecke JW (2001) Myeloperoxidase-catalyzed 3-chlorotyrosine formation in dialysis patients. Free Radic Biol Med 31:1163–1169

    CAS  PubMed  Google Scholar 

  25. Ito K, Chen J, Seshan SV, Khodadadian JJ, Gallagher R, El Chaar M, Vaughan ED Jr, Poppas DP, Felsen D (2005) Dietary arginine supplementation attenuates renal damage after relief of unilateral ureteral obstruction in rats. Kidney Int 68:515–528

    CAS  PubMed  Google Scholar 

  26. Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, van der Vliet A (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397

    CAS  PubMed  Google Scholar 

  27. Wang Z, Nicholls SJ, Rodriguez ER, Kummu O, Horkko S, Barnard J, Reynolds WF, Topol EJ, DiDonato JA, Hazen SL (2007) Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med 13:1176–1184

    CAS  PubMed  Google Scholar 

  28. Kalantar-Zadeh K, Brennan ML, Hazen SL (2006) Serum myeloperoxidase and mortality in maintenance hemodialysis patients. Am J Kidney Dis 48:59–68

    CAS  PubMed  Google Scholar 

  29. Matthijsen RA, Huugen D, Hoebers NT, de Vries B, Peutz-Kootstra CJ, Aratani Y, Daha MR, Tervaert JW, Buurman WA, Heeringa P (2007) Myeloperoxidase is critically involved in the induction of organ damage after renal ischemia reperfusion. Am J Pathol 171:1743–1752

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Porubsky S, Schmid H, Bonrouhi M, Kretzler M, Malle E, Nelson PJ, Grone HJ (2004) Influence of native and hypochlorite-modified low-density lipoprotein on gene expression in human proximal tubular epithelium. Am J Pathol 164:2175–2187

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghezzi P, Bonetto V, Fratelli M (2005) Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation. Antioxid Redox Signal 7:964–972

    CAS  PubMed  Google Scholar 

  32. Hamdane D, Kiger L, Dewilde S, Green BN, Pesce A, Uzan J, Burmester T, Hankeln T, Bolognesi M, Moens L, Marden MC (2003) The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin. J Biol Chem 278:51713–51721

    CAS  PubMed  Google Scholar 

  33. Jordan PA, Gibbins JM (2006) Extracellular disulfide exchange and the regulation of cellular function. Antioxid Redox Signal 8:312–324

    CAS  PubMed  Google Scholar 

  34. Kerblat I, Drouet C, Chesne S, Marche PN (1999) Importance of thioredoxin in the proteolysis of an immunoglobulin G as antigen by lysosomal Cys-proteases. Immunology 97:62–68

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Reeves JP, Bailey CA, Hale CC (1986) Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem 261:4948–4955

    CAS  PubMed  Google Scholar 

  36. Yang J, Chen H, Vlahov IR, Cheng JX, Low PS (2006) Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging. Proc Natl Acad Sci U S A 103:13872–13877

    CAS  PubMed  PubMed Central  Google Scholar 

  37. den Hertog J, Groen A, van der Wijk T (2005) Redox regulation of protein-tyrosine phosphatases. Arch Biochem Biophys 434:11–15

    Google Scholar 

  38. Groen A, Lemeer S, van der Wijk T, Overvoorde J, Heck AJ, Ostman A, Barford D, Slijper M, den Hertog J (2005) Differential oxidation of protein-tyrosine phosphatases. J Biol Chem 280:10298–10304

    CAS  PubMed  Google Scholar 

  39. Kemp M, Go YM, Jones DP (2008) Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 44:921–937

    CAS  PubMed  Google Scholar 

  40. Scholze A, Rinder C, Beige J, Riezler R, Zidek W, Tepel M (2004) Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure. Circulation 109:369–374

    CAS  PubMed  Google Scholar 

  41. Van Remmen H, Salvador C, Yang H, Huang TT, Epstein CJ, Richardson A (1999) Characterization of the antioxidant status of the heterozygous manganese superoxide dismutase knockout mouse. Arch Biochem Biophys 363:91–97

    PubMed  Google Scholar 

  42. Folz RJ, Guan J, Seldin MF, Oury TD, Enghild JJ, Crapo JD (1997) Mouse extracellular superoxide dismutase: primary structure, tissue-specific gene expression, chromosomal localization, and lung in situ hybridization. Am J Respir Cell Mol Biol 17:393–403

    CAS  PubMed  Google Scholar 

  43. Asaba K, Tojo A, Onozato ML, Goto A, Fujita T (2007) Double-edged action of SOD mimetic in diabetic nephropathy. J Cardiovasc Pharmacol 49:13–19

    CAS  PubMed  Google Scholar 

  44. DeRubertis FR, Craven PA, Melhem MF, Salah EM (2004) Attenuation of renal injury in db/db mice overexpressing superoxide dismutase: evidence for reduced superoxide-nitric oxide interaction. Diabetes 53:762–768

    CAS  PubMed  Google Scholar 

  45. McCullough PA, Li S, Jurkovitz CT, Stevens L, Collins AJ, Chen SC, Norris KC, McFarlane S, Johnson B, Shlipak MG, Obialo CI, Brown WW, Vassaloti J, Whaley-Connell AT, Brenner RM, Bakris GL (2008) Chronic kidney disease, prevalence of premature cardiovascular disease, and relationship to short-term mortality. Am Heart J 156:277–283

    PubMed  Google Scholar 

  46. Yamanobe T, Okada F, Iuchi Y, Onuma K, Tomita Y, Fujii J (2007) Deterioration of ischemia/reperfusion-induced acute renal failure in SOD1-deficient mice. Free Radic Res 41:200–207

    CAS  PubMed  Google Scholar 

  47. Fukai T, Folz RJ, Landmesser U, Harrison DG (2002) Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res 55:239–249

    CAS  PubMed  Google Scholar 

  48. Kliment CR, Tobolewski JM, Manni ML, Tan RJ, Enghild J, Oury TD (2008) Extracellular superoxide dismutase protects against matrix degradation of heparan sulfate in the lung. Antioxid Redox Signal 10:261–268

    CAS  PubMed  Google Scholar 

  49. Petersen SV, Oury TD, Ostergaard L, Valnickova Z, Wegrzyn J, Thogersen IB, Jacobsen C, Bowler RP, Fattman CL, Crapo JD, Enghild JJ (2004) Extracellular superoxide dismutase (EC-SOD) binds to type I collagen and protects against oxidative fragmentation. J Biol Chem 279:13705–13710

    CAS  PubMed  Google Scholar 

  50. Gongora MC, Lob HE, Landmesser U, Guzik TJ, Martin WD, Ozumi K, Wall SM, Wilson DS, Murthy N, Gravanis M, Fukai T, Harrison DG (2008) Loss of extracellular superoxide dismutase leads to acute lung damage in the presence of ambient air: a potential mechanism underlying adult respiratory distress syndrome. Am J Pathol 173:915–926

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    CAS  PubMed  Google Scholar 

  52. Oberley TD, Verwiebe E, Zhong W, Kang SW, Rhee SG (2001) Localization of the thioredoxin system in normal rat kidney. Free Radic Biol Med 30:412–424

    CAS  PubMed  Google Scholar 

  53. Kobayashi M, Sugiyama H, Wang DH, Toda N, Maeshima Y, Yamasaki Y, Masuoka N, Yamada M, Kira S, Makino H (2005) Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice. Kidney Int 68:1018–1031

    CAS  PubMed  Google Scholar 

  54. Sunami R, Sugiyama H, Wang DH, Kobayashi M, Maeshima Y, Yamasaki Y, Masuoka N, Ogawa N, Kira S, Makino H (2004) Acatalasemia sensitizes renal tubular epithelial cells to apoptosis and exacerbates renal fibrosis after unilateral ureteral obstruction. Am J Physiol Renal Physiol 286:F1030–F1038

    CAS  PubMed  Google Scholar 

  55. Tarpey MM, Fridovich I (2001) Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 89:224–236

    CAS  PubMed  Google Scholar 

  56. Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286:R431–R444

    CAS  PubMed  Google Scholar 

  57. Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43:995–1022

    CAS  PubMed  Google Scholar 

  58. Pryor WA (1999) Oxidative stress status: OSS, BOSS, and "Wild Bill" Donovan. Free Radic Biol Med 27:1135–1136

    CAS  PubMed  Google Scholar 

  59. de Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP (1999) Biomarkers of free radical damage: applications in experimental animals and in humans. Free Radic Biol Med 26:202–226

    PubMed  Google Scholar 

  60. Ramos LF, Shintani A, Ikizler TA, Himmelfarb J (2008) Oxidative stress and inflammation are associated with adiposity in moderate to severe CKD. J Am Soc Nephrol 19:593–599

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Himmelfarb J, McMonagle E, Freedman S, Klenzak J, McMenamin E, Le P, Pupim LB, Ikizler TA, the PICARD group (2004) Oxidative stress is increased in critically ill patients with acute renal failure. J Am Soc Nephrol 15:2449–2456

    CAS  PubMed  Google Scholar 

  62. Baumann M, Caron M, Schmaderer C, Schulte C, Viklicky O, von Weyhern CW, Lutz J, Heemann U (2008) Renal N(epsilon)-carboxymethyllysine deposition after kidney transplantation. Transplantation 86:330–335

    CAS  PubMed  Google Scholar 

  63. Coughlan MT, Mibus AL, Forbes JM (2008) Oxidative stress and advanced glycation in diabetic nephropathy. Ann N Y Acad Sci 1126:190–193

    CAS  PubMed  Google Scholar 

  64. Coskun C, Kural A, Doventas Y, Koldas M, Ozturk H, Inal BB, Gumus A (2007) Hemodialysis and protein oxidation products. Ann N Y Acad Sci 1100:404–408

    CAS  PubMed  Google Scholar 

  65. Nakayama M, Nakayama K, Zhu WJ, Shirota Y, Terawaki H, Sato T, Kohno M, Ito S (2008) Polymorphonuclear leukocyte injury by methylglyoxal and hydrogen peroxide: a possible pathological role for enhanced oxidative stress in chronic kidney disease. Nephrol Dial Transplant 23:3096–3102

    CAS  PubMed  Google Scholar 

  66. Orhan H, van Holland B, Krab B, Moeken J, Vermeulen NP, Hollander P, Meerman JH (2004) Evaluation of a multi-parameter biomarker set for oxidative damage in man: increased urinary excretion of lipid, protein and DNA oxidation products after one hour of exercise. Free Radic Res 38:1269–1279

    CAS  PubMed  Google Scholar 

  67. Stenvinkel P (2001) Malnutrition and chronic inflammation as risk factors for cardiovascular disease in chronic renal failure. Blood Purif 19:143–151

    CAS  PubMed  Google Scholar 

  68. Arici M, Walls J (2001) End-stage renal disease, atherosclerosis, and cardiovascular mortality: is C-reactive protein the missing link? Kidney Int 59:407–414

    CAS  PubMed  Google Scholar 

  69. Chertow GM, Soroko SH, Paganini EP, Cho KC, Himmelfarb J, Ikizler TA, Mehta RL (2006) Mortality after acute renal failure: models for prognostic stratification and risk adjustment. Kidney Int 70:1120–1126

    CAS  PubMed  Google Scholar 

  70. Ikizler TA, Wingard RL, Harvell J, Shyr Y, Hakim RM (1999) Association of morbidity with markers of nutrition and inflammation in chronic hemodialysis patients: a prospective study. Kidney Int 55:1945–1951

    CAS  PubMed  Google Scholar 

  71. Stenvinkel P, Barany P, Heimburger O, Pecoits-Filho R, Lindholm B (2002) Mortality, malnutrition, and atherosclerosis in ESRD: what is the role of interleukin-6? Kidney Int Suppl 80:S103–S108

    CAS  Google Scholar 

  72. Lindholm B, Heimburger O, Stenvinkel P (2002) What are the causes of protein-energy malnutrition in chronic renal insufficiency? Am J Kidney Dis 39:422–425

    PubMed  Google Scholar 

  73. Pecoits-Filho R, Barany P, Lindholm B, Heimburger O, Stenvinkel P (2002) Interleukin-6 is an independent predictor of mortality in patients starting dialysis treatment. Nephrol Dial Transplant 17:1684–1688

    CAS  PubMed  Google Scholar 

  74. Chawla LS, Seneff MG, Nelson DR, Williams M, Levy H, Kimmel PL, Macias WL (2007) Elevated plasma concentrations of IL-6 and elevated APACHE II score predict acute kidney injury in patients with severe sepsis. Clin J Am Soc Nephrol 2:22–30

    CAS  PubMed  Google Scholar 

  75. Kimmel PL, Phillips TM, Simmens SJ, Peterson RA, Weihs KL, Alleyne S, Cruz I, Yanovski JA, Veis JH (1998) Immunologic function and survival in hemodialysis patients. Kidney Int 54:236–244

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bologa RM, Levine DM, Parker TS, Cheigh JS, Serur D, Stenzel KH, Rubin AL (1998) Interleukin-6 predicts hypoalbuminemia, hypocholesterolemia, and mortality in hemodialysis patients. Am J Kidney Dis 32:107–114

    CAS  PubMed  Google Scholar 

  77. Jung HH, Choi DH, Lee SH (2004) Serum malondialdehyde and coronary artery disease in hemodialysis patients. Am J Nephrol 24:537–542

    CAS  PubMed  Google Scholar 

  78. Handelman GJ, Walter MF, Adhikarla R, Gross J, Dallal GE, Levin NW, Blumberg JB (2001) Elevated plasma F2-isoprostanes in patients on long-term hemodialysis. Kidney Int 59:1960–1966

    CAS  PubMed  Google Scholar 

  79. Ikizler TA, Morrow JD, Roberts LJ, Evanson JA, Becker B, Hakim RM, Shyr Y, Himmelfarb J (2002) Plasma F2-isoprostane levels are elevated in chronic hemodialysis patients. Clin Nephrol 58:190–197

    CAS  PubMed  Google Scholar 

  80. Anilkumar N, Weber R, Zhang M, Brewer A, Shah AM (2008) Nox4 and nox2 NADPH oxidases mediate distinct cellular redox signaling responses to agonist stimulation. Arterioscler Thromb Vasc Biol 28:1347–1354

    CAS  PubMed  Google Scholar 

  81. Schappi MG, Jaquet V, Belli DC, Krause KH (2008) Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. Semin Immunopathol 30:255–271

    PubMed  Google Scholar 

  82. Zhang WJ, Wei H, Frei B (2008) Genetic deficiency of NADPH oxidase does not diminish, but rather enhances, LPS-induced acute inflammatory responses in vivo. Free Radic Biol Med 46:791–798

    PubMed  PubMed Central  Google Scholar 

  83. Liu RM (2008) Oxidative stress, plasminogen activator inhibitor 1, and lung fibrosis. Antioxid Redox Signal 10:303–319

    CAS  PubMed  Google Scholar 

  84. Vayalil PK, Iles KE, Choi J, Yi AK, Postlethwait EM, Liu RM (2007) Glutathione suppresses TGF-β-induced PAI-1 expression by inhibiting p38 and JNK MAPK and the binding of AP-1, SP-1, and Smad to the PAI-1 promoter. Am J Physiol Lung Cell Mol Physiol 293:L1281–L1292

    CAS  PubMed  Google Scholar 

  85. Vayalil PK, Olman M, Murphy-Ullrich JE, Postlethwait EM, Liu RM (2005) Glutathione restores collagen degradation in TGF-β-treated fibroblasts by blocking plasminogen activator inhibitor-1 expression and activating plasminogen. Am J Physiol Lung Cell Mol Physiol 289:L937–L945

    CAS  PubMed  Google Scholar 

  86. Landray MJ, Wheeler DC, Lip GY, Newman DJ, Blann AD, McGlynn FJ, Ball S, Townend JN, Baigent C (2004) Inflammation, endothelial dysfunction, and platelet activation in patients with chronic kidney disease: the chronic renal impairment in Birmingham (CRIB) study. Am J Kidney Dis 43:244–253

    CAS  PubMed  Google Scholar 

  87. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, Himmelfarb J (2004) Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int 65:1009–1016

    PubMed  Google Scholar 

  88. Shlipak MG, Fried LF, Crump C, Bleyer AJ, Manolio TA, Tracy RP, Furberg CD, Psaty BM (2003) Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation 107:87–92

    CAS  PubMed  Google Scholar 

  89. Annuk M, Zilmer M, Lind L, Linde T, Fellstrom B (2001) Oxidative stress and endothelial function in chronic renal failure. J Am Soc Nephrol 12:2747–2752

    CAS  PubMed  Google Scholar 

  90. Bolton CH, Downs LG, Victory JG, Dwight JF, Tomson CR, Mackness MI, Pinkney JH (2001) Endothelial dysfunction in chronic renal failure: roles of lipoprotein oxidation and pro-inflammatory cytokines. Nephrol Dial Transplant 16:1189–1197

    CAS  PubMed  Google Scholar 

  91. Mezzano D, Pais EO, Aranda E, Panes O, Downey P, Ortiz M, Tagle R, Gonzalez F, Quiroga T, Caceres MS, Leighton F, Pereira J (2001) Inflammation, not hyperhomocysteinemia, is related to oxidative stress and hemostatic and endothelial dysfunction in uremia. Kidney Int 60:1844–1850

    CAS  PubMed  Google Scholar 

  92. Descamps-Latscha B, Witko-Sarsat V (2001) Importance of oxidatively modified proteins in chronic renal failure. Kidney Int Suppl 78:S108–S113

    CAS  PubMed  Google Scholar 

  93. Simmons EM, Langone A, Sezer MT, Vella JP, Recupero P, Morrow JD, Ikizler TA, Himmelfarb J (2005) Effect of renal transplantation on biomarkers of inflammation and oxidative stress in end-stage renal disease patients. Transplantation 79:914–919

    CAS  PubMed  Google Scholar 

  94. Wilson SK (1990) Role of oxygen-derived free radicals in acute angiotensin II-induced hypertensive vascular disease in the rat. Circ Res 66:722–734

    CAS  PubMed  Google Scholar 

  95. Thomas M, Gavrila D, McCormick ML, Miller FJ Jr, Daugherty A, Cassis LA, Dellsperger KC, Weintraub NL (2006) Deletion of p47phox attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Circulation 114:404–413

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsuki M, Takai S, Yamanishi K, Miyazaki M, Matsubara H, Yabe-Nishimura C (2005) Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 112:2677–2685

    CAS  PubMed  Google Scholar 

  97. Sugiyama H, Kobayashi M, Wang DH, Sunami R, Maeshima Y, Yamasaki Y, Masuoka N, Kira S, Makino H (2005) Telmisartan inhibits both oxidative stress and renal fibrosis after unilateral ureteral obstruction in acatalasemic mice. Nephrol Dial Transplant 20:2670–2680

    CAS  PubMed  Google Scholar 

  98. Fujimoto S, Satoh M, Horike H, Hatta H, Haruna Y, Kobayashi S, Namikoshi T, Arakawa S, Tomita N, Kashihara N (2008) Olmesartan ameliorates progressive glomerular injury in subtotal nephrectomized rats through suppression of superoxide production. Hypertens Res 31:305–313

    CAS  PubMed  Google Scholar 

  99. Liu XP, Pang YJ, Zhu WW, Zhao TT, Zheng M, Wang YB, Sun ZJ, Sun SJ (2009) Benazepril, an angiotensin-converting enzyme inhibitor, alleviates renal injury in spontaneously hypertensive rats by inhibiting advanced glycation end-product-mediated pathways. Clin Exp Pharmacol Physiol 36:287–296

    CAS  PubMed  Google Scholar 

  100. Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D, Longaretti L, Cassis P, Morigi M, Coffman TM, Remuzzi G (2009) Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 119:524–530

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Fliser D, Wagner KK, Loos A, Tsikas D, Haller H (2005) Chronic angiotensin II receptor blockade reduces (intra)renal vascular resistance in patients with type 2 diabetes. J Am Soc Nephrol 16:1135–1140

    CAS  PubMed  Google Scholar 

  102. Aslam S, Santha T, Leone A, Wilcox C (2006) Effects of amlodipine and valsartan on oxidative stress and plasma methylarginines in end-stage renal disease patients on hemodialysis. Kidney Int 70:2109–2115

    CAS  PubMed  Google Scholar 

  103. Argani H, Ghorbanihaghjo A, Aghaeishahsavari M, Noroozianavval M, Rashtchizadeh N, Veisi P, Safa J, Abediazar S (2008) Effects of losartan and enalapril on high-sensitivity C-reactive protein and total antioxidant in renal transplant recipients with renin–angiotensin system polymorphisms. Transplant Proc 40:16–21

    CAS  PubMed  Google Scholar 

  104. Moore KJ, Freeman MW (2006) Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol 26:1702–1711

    CAS  PubMed  Google Scholar 

  105. Febbraio M, Hajjar DP, Silverstein RL (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108:785–791

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, Rhee JS, Silverstein R, Hoff HF, Freeman MW (2002) Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 277:49982–49988

    CAS  PubMed  Google Scholar 

  107. Babaev VR, Gleaves LA, Carter KJ, Suzuki H, Kodama T, Fazio S, Linton MF (2000) Reduced atherosclerotic lesions in mice deficient for total or macrophage-specific expression of scavenger receptor-A. Arterioscler Thromb Vasc Biol 20:2593–2599

    CAS  PubMed  Google Scholar 

  108. Okamura DM, Pennathur S, Pasichnyk K, Lopez-Guisa JM, Collins S, Febbraio M, Heinecke J, Eddy AA (2009) CD36 regulates oxidative stress and inflammation in hypercholesterolemic chronic kidney disease. J Am Soc Nephrol 20:495–505

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, Sharma K, Silverstein RL (2000) Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 105:1049–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Manning-Tobin JJ, Moore KJ, Seimon TA, Bell SA, Sharuk M, Alvarez-Leite JI, de Winther MP, Tabas I, Freeman MW (2009) Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol 29:19–26

    CAS  PubMed  Google Scholar 

  111. Beamer CA, Holian A (2005) Scavenger receptor class A type I/II (CD204) null mice fail to develop fibrosis following silica exposure. Am J Physiol Lung Cell Mol Physiol 289:L186–L195

    CAS  PubMed  Google Scholar 

  112. IUPAC-IUB Commission on Biochemical Nomenclature (CBN) (1974) Nomenclature of tocopherols and related compounds. Recommendations (1973). Eur J Biochem 46:217–219

    Google Scholar 

  113. Atkinson J, Epand RF, Epand RM (2008) Tocopherols and tocotrienols in membranes: a critical review. Free Radic Biol Med 44:739–764

    CAS  PubMed  Google Scholar 

  114. Boscoboinik D, Szewczyk A, Hensey C, Azzi A (1991) Inhibition of cell proliferation by alpha-tocopherol. Role of protein kinase C. J Biol Chem 266:6188–6194

    CAS  PubMed  Google Scholar 

  115. Brigelius-Flohe R (2009) Vitamin E: the shrew waiting to be tamed. Free Radic Biol Med 46:543–554

    CAS  PubMed  Google Scholar 

  116. Hensley K, Benaksas EJ, Bolli R, Comp P, Grammas P, Hamdheydari L, Mou S, Pye QN, Stoddard MF, Wallis G, Williamson KS, West M, Wechter WJ, Floyd RA (2004) New perspectives on vitamin E: gamma-tocopherol and carboxyelthylhydroxychroman metabolites in biology and medicine. Free Radic Biol Med 36:1–15

    CAS  PubMed  Google Scholar 

  117. Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ (2003) Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361:2017–2023

    CAS  PubMed  Google Scholar 

  118. Gordon CA, Himmelfarb J (2004) Antioxidant therapy in uremia: evidence-based medicine? Semin Dial 17:327–332

    PubMed  Google Scholar 

  119. Boaz M, Smetana S, Weinstein T, Matas Z, Gafter U, Iaina A, Knecht A, Weissgarten Y, Brunner D, Fainaru M, Green MS (2000) Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 356:1213–1218

    CAS  PubMed  Google Scholar 

  120. Himmelfarb J, Kane J, McMonagle E, Zaltas E, Bobzin S, Boddupalli S, Phinney S, Miller G (2003) Alpha and gamma tocopherol metabolism in healthy subjects and patients with end-stage renal disease. Kidney Int 64:978–991

    CAS  PubMed  Google Scholar 

  121. Tepel M, van der Giet M, Statz M, Jankowski J, Zidek W (2003) The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: a randomized, controlled trial. Circulation 107:992–995

    CAS  PubMed  Google Scholar 

  122. Witko-Sarsat V, Gausson V, Nguyen AT, Touam M, Drueke T, Santangelo F, Descamps-Latscha B (2003) AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients. Kidney Int 64:82–91

    CAS  PubMed  Google Scholar 

  123. Adabag AS, Ishani A, Bloomfield HE, Ngo AK, Wilt TJ (2009) Efficacy of N-acetylcysteine in preventing renal injury after heart surgery: a systematic review of randomized trials. Eur Heart J doi:10.1093/eurheartj/ehp053

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Huang KC, Yang CC, Lee KT, Chien CT (2003) Reduced hemodialysis-induced oxidative stress in end-stage renal disease patients by electrolyzed reduced water. Kidney Int 64:704–714

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daryl M. Okamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamura, D.M., Himmelfarb, J. Tipping the redox balance of oxidative stress in fibrogenic pathways in chronic kidney disease. Pediatr Nephrol 24, 2309–2319 (2009). https://doi.org/10.1007/s00467-009-1199-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-009-1199-5

Keywords

Navigation