Skip to main content

Advertisement

Log in

VCP Inhibition Augments NLRP3 Inflammasome Activation

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Lysosomal membrane permeabilization caused either via phagocytosis of particulates or the uptake of protein aggregates can trigger the activation of NLRP3 inflammasome- an intense inflammatory response that drives the release of the pro-inflammatory cytokine IL-1β by regulating the activity of CASPASE 1. The maintenance of lysosomal homeostasis and lysosomal membrane integrity is facilitated by the AAA+ ATPase, VCP/p97 (VCP). However, the relationship between VCP and NLRP3 inflammasome activity remains unexplored. Here, we demonstrate that the VCP inhibitors, DBeQ and ML240 elicit the activation of NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs) when used as activation stimuli. Moreover, genetic inhibition of VCP or VCP chemical inhibition enhances lysosomal membrane damage and augments LLoME-associated NLRP3 inflammasome activation in BMDMs. Similarly, VCP inactivation also augments NLRP3 inflammasome activation mediated by aggregated alpha-synuclein fibrils and lysosomal damage. These data suggest that VCP is a participant in the complex regulation of NLRP3 inflammasome activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

AAA+ ATPase:

ATPase associated with different cellular activities adenosine triphosphatase

BMDMs:

Bone-marrow-derived macrophages

DAMPs:

Damage-associated molecular patterns

NLRP3:

Nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3

IL-1β:

Interleukin 1β

VCP:

Valosin-containing protein

iPSCS:

Induced pluripotent stem cells

LLoMe:

L-Leucyl-L-Leucine methyl ester

ERAD:

Endoplasmic reticulum-associated degradation

NOD:

Nucleotide-binding oligomerization domain

LRR:

Leucine-rich repeats

IBMPFD:

Inclusion body myopathy with Paget disease of bone and frontotemporal dementia

MSP:

Multisystem proteinopathy

RNA:

Ribonucleic acid

SQSTM1:

Sequestosome-1

αS PFF:

α-Synuclein preformed fibrils

TDP-43:

Transactive response DNA binding protein-43

ALS:

Amyotrophic lateral sclerosis

NFκB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PD:

Parkinson's disease

TNF:

Tumor necrosis factor

PBST:

Phosphate Buffer Saline, 0.1% Tween 20

RT:

Room Temperature

BSA:

Bovine Serum Albumin

EGF:

Epidermal growth factor

DAMPS:

Damage-associated molecular patterns

ASC:

Apoptosis-associated speck-like protein containing a caspase recruitment domain

ATP:

Adenosine triphosphate

LPS:

Lipopolysaccharide

GAL-3:

GALECTIN-3

VIN:

VINCULIN

FTD:

Frontotemporal dementia

References

  1. Place, D.E., and T.-D. Kanneganti. 2018. Recent advances in inflammasome biology. Current Opinion in Immunology 50: 32–38. https://doi.org/10.1016/j.coi.2017.10.011.

    Article  CAS  PubMed  Google Scholar 

  2. Baroja-Mazo, A., F. Martín-Sánchez, A.I. Gomez, C.M. Martínez, J. Amores-Iniesta, V. Compan, M. Barberà-Cremades, et al. 2014. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nature Immunology 15: 738–748. https://doi.org/10.1038/ni.2919.

    Article  CAS  PubMed  Google Scholar 

  3. Fu, J., and W. Hao. 2023. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annual Review of Immunology 41: 301–316. https://doi.org/10.1146/annurev-immunol-081022-021207.

    Article  CAS  PubMed  Google Scholar 

  4. Dinarello, Charles A. 2007. A signal for the caspase-1 inflammasome free of TLR. Immunity 26: 383–385. https://doi.org/10.1016/j.immuni.2007.04.005.

    Article  CAS  PubMed  Google Scholar 

  5. Mendiola, A. S., and A. E. Cardona. 2018. The IL-1β phenomena in neuroinflammatory diseases  Journal of Neural Transmission  (Vienna Austria : 1996) 125: 781–795. https://doi.org/10.1007/s00702-017-1732-9.

    Article  CAS  PubMed  Google Scholar 

  6. Hornung, V., F. Bauernfeind, A. Halle, E.O. Samstad, H. Kono, K.L. Rock, K.A. Fitzgerald, and E. Latz. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology 9: 847–856. https://doi.org/10.1038/ni.1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Franchi, L., R. Muñoz-Planillo, and G. Núñez. 2012. Sensing and reacting to microbes through the inflammasomes. Nature Immunology 13: 325–332. https://doi.org/10.1038/ni.2231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lima, Heriberto Jr, Lee S. Jacobson, Michael F. Goldberg, Kartik Chandran, Felipe Diaz-Griffero, Michael P. Lisanti, and Jürgen Brojatsch. 2013. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell cycle (Georgetown, Tex.) 12: 1868–1878. https://doi.org/10.4161/cc.24903.

  9. Gross, Olaf, Amir S. Yazdi, Christina J. Thomas, Mark Masin, Leonhard X. Heinz, Greta Guarda, Manfredo Quadroni, Stefan K. Drexler, and Jurg Tschopp. 2012. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36: 388–400. https://doi.org/10.1016/j.immuni.2012.01.018.

    Article  CAS  PubMed  Google Scholar 

  10. Amores-Iniesta, J., M. Barberà-Cremades, C.M. Martínez, J.A. Pons, B. Revilla-Nuin, L. Martínez-Alarcón, F. Di Virgilio, P. Parrilla, A. Baroja-Mazo, and P. Pelegrín. 2017. Extracellular ATP Activates the NLRP3 Inflammasome and Is an Early Danger Signal of Skin Allograft Rejection. Cell Reports 21: 3414–3426. https://doi.org/10.1016/j.celrep.2017.11.079.

    Article  CAS  PubMed  Google Scholar 

  11. Gurcel, L., L. Abrami, S. Girardin, J. Tschopp, and F. Gisou van der Goot. 2006. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126: 1135–1145. https://doi.org/10.1016/j.cell.2006.07.033.

    Article  CAS  PubMed  Google Scholar 

  12. Perregaux, D., and C.A. Gabel. 1994. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. The Journal of Biological Chemistry 269: 15195–15203.

    Article  CAS  PubMed  Google Scholar 

  13. Tang, T., X. Lang, X. Congfei, X. Wang, T. Gong, Y. Yang, J. Cui, et al. 2017. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nature Communications 8: 202. https://doi.org/10.1038/s41467-017-00227-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, Q., D. Zhang, D. Hu, X. Zhou, and Y. Zhou. 2018. The role of mitochondria in NLRP3 inflammasome activation. Molecular Immunology 103: 115–124. https://doi.org/10.1016/j.molimm.2018.09.010.

    Article  CAS  PubMed  Google Scholar 

  15. Sanman, LE., Y. Qian, N.A. Eisele, T.M. Ng, W.A. van der Linden, D.M. Monack, E. Weerapana, and M. Bogyo. 2016. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. eLife 5: e13663. https://doi.org/10.7554/eLife.13663.

  16. Muñoz-Planillo, R., P. Kuffa, G. Martínez-Colón, B.L. Smith, T.M. Rajendiran, and G. Núñez. 2013. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38: 1142–1153. https://doi.org/10.1016/j.immuni.2013.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hou, Y., H. He, M. Ma, and R. Zhou. 2023. Apilimod activates the NLRP3 inflammasome through lysosome-mediated mitochondrial damage. Frontiers in Immunology 14: 1128700. https://doi.org/10.3389/fimmu.2023.1128700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou, Y., L. Ming, D. Ren-Hong, C. Qiao, C.-Y. Jiang, K.-Z. Zhang, J.-H. Ding, and H. Gang. 2016. MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Molecular Neurodegeneration 11: 28. https://doi.org/10.1186/s13024-016-0094-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gordon, R., E.A. Albornoz, D.C. Christie, M.R. Langley, V. Kumar, S. Mantovani, A.A.B. Robertson, et al. 2018. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.aah4066.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tresse, E., F.A. Salomons, J. Vesa, L.C. Bott, V. Kimonis, T.-P. Yao, N.P. Dantuma, and J.P. Taylor. 2010. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6: 217–227. https://doi.org/10.4161/auto.6.2.11014.

    Article  CAS  PubMed  Google Scholar 

  21. Papadopoulos, C., P. Kirchner, M. Bug, D. Grum, L. Koerver, N. Schulze, R. Poehler, et al. 2017. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. The EMBO Journal 36: 135–150. https://doi.org/10.15252/embj.201695148.

  22. Seguin, S.J., F.F. Morelli, J. Vinet, D. Amore, S. De Biasi, A. Poletti, D.C. Rubinsztein, and S. Carra. 2014. Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly. Cell Death and Differentiation 21: 1838–1851. https://doi.org/10.1038/cdd.2014.103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Magnaghi, P., R. D’Alessio, B. Valsasina, N. Avanzi, S. Rizzi, D. Asa, F. Gasparri, et al. 2013. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nature Chemical Biology 9: 548–556. https://doi.org/10.1038/nchembio.1313.

    Article  CAS  PubMed  Google Scholar 

  24. Chou, Tsui-Fen., Steve J. Brown, Dmitriy Minond, B.E. Nordin, K. Li, A.C. Jones, P. Chase, et al. 2011. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proceedings of the National Academy of Sciences of the United States of America 108: 4834–4839. https://doi.org/10.1073/pnas.1015312108.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fang, C.-J., L. Gui, X. Zhang, D.R. Moen, K. Li, K.J. Frankowski, H.J. Lin, F.J. Schoenen, and T.-F. Chou. 2015. Evaluating p97 inhibitor analogues for their domain selectivity and potency against the p97–p47 complex. ChemMedChem 10: 52–56. https://doi.org/10.1002/cmdc.201402420.

    Article  CAS  PubMed  Google Scholar 

  26. Anderson, D.J., R. Le Moigne, S. Djakovic, B. Kumar, J. Rice, S. Wong, J. Wang, et al. 2015. Targeting the AAA ATPase p97 as an Approach to Treat Cancer through Disruption of Protein Homeostasis. Cancer Cell 28: 653–665. https://doi.org/10.1016/j.ccell.2015.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Al-Obeidi, E., S. Al-Tahan, A. Surampalli, N. Goyal, A.K. Wang, A. Hermann, M. Omizo, C. Smith, T. Mozaffar, and V. Kimonis. 2018. Genotype-phenotype study in patients with valosin-containing protein mutations associated with multisystem proteinopathy. Clinical Genetics 93: 119–125. https://doi.org/10.1111/cge.13095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arhzaouy, K., C. Papadopoulos, N. Schulze, S.K. Pittman, H. Meyer, and C.C. Weihl. 2019. VCP maintains lysosomal homeostasis and TFEB activity in differentiated skeletal muscle. Autophagy 15: 1082–1099. https://doi.org/10.1080/15548627.2019.1569933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Asai, T., Y. Tomita, S.-I. Nakatsuka, Y. Hoshida, A. Myoui, H. Yoshikawa, and K. Aozasa. 2002. VCP (p97) regulates NFkappaB signaling pathway, which is important for metastasis of osteosarcoma cell line. Japanese Journal of Cancer Research 93: 296–304. https://doi.org/10.1111/j.1349-7006.2002.tb02172.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dec, E., P. Rana, V. Katheria, R. Dec, M. Khare, A. Nalbandian, S.-Y. Leu, et al. 2014. Cytokine profiling in patients with VCP-associated disease. Clinical and Translational Science 7: 29–32. https://doi.org/10.1111/cts.12117.

    Article  CAS  PubMed  Google Scholar 

  31. Nalbandian, A., A.A. Khan, R. Srivastava, K.J. Llewellyn, B. Tan, N. Shukr, Y. Fazli, V.E. Kimonis, and L. BenMohamed. 2017. Activation of the NLRP3 Inflammasome Is Associated with Valosin-Containing Protein Myopathy. Inflammation 40: 21–41. https://doi.org/10.1007/s10753-016-0449-5.

    Article  CAS  PubMed  Google Scholar 

  32. Dhavale, D.D., C. Tsai, D.P. Bagchi, L.A. Engel, J. Sarezky, and P.T. Kotzbauer. 2017. A sensitive assay reveals structural requirements for α-synuclein fibril growth. The Journal of Biological Chemistry 292: 9034–9050. https://doi.org/10.1074/jbc.M116.767053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heneka, M.T., M.P. Kummer, A. Stutz, A. Delekate, S. Schwartz, A. Vieira-Saecker, A. Griep, et al. 2013. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493: 674–678. https://doi.org/10.1038/nature11729.

    Article  CAS  PubMed  Google Scholar 

  34. Codolo, G., N. Plotegher, T. Pozzobon, M. Brucale, I. Tessari, L. Bubacco, and M. de Bernard. 2013. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PloS One 8: e55375. https://doi.org/10.1371/journal.pone.0055375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Debye, B., L. Schmülling, L. Zhou, G. Rune, C. Beyer, and S. Johann. 2018. Neurodegeneration and NLRP3 inflammasome expression in the anterior thalamus of SOD1(G93A) ALS mice. Brain Pathology 28: 14–27. https://doi.org/10.1111/bpa.12467.

    Article  CAS  PubMed  Google Scholar 

  36. Rawat, R., T.V. Cohen, B. Ampong, D. Francia, A. Henriques-Pons, E.P. Hoffman, and K. Nagaraju. 2010. Inflammasome up-regulation and activation in dysferlin-deficient skeletal muscle. The American Journal of Pathology 176: 2891–2900. https://doi.org/10.2353/ajpath.2010.090058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Root, J., P. Merino, A. Nuckols, M. Johnson, and T. Kukar. 2021. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiology of Disease 154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kimonis, V.E., S.G. Mehta, E.C. Fulchiero, D. Thomasova, M. Pasquali, K. Boycott, E.G. Neilan, et al. 2008. Clinical studies in familial VCP myopathy associated with Paget disease of bone and frontotemporal dementia. American Journal of Medical Genetics Part A 146A: 745–757. https://doi.org/10.1002/ajmg.a.31862.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chauhan, S., S. Kumar, A. Jain, M. Ponpuak, M.H. Mudd, T. Kimura, S.W. Choi, et al. 2016. TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis. Developmental Cell 39: 13–27. https://doi.org/10.1016/j.devcel.2016.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jia, J., Y.P. Abudu, A. Claude-Taupin, G. Yuexi, S. Kumar, S.W. Choi, R. Peters, et al. 2019. Galectins control MTOR and AMPK in response to lysosomal damage to induce autophagy. Autophagy 15: 169–171. https://doi.org/10.1080/15548627.2018.1505155.

    Article  CAS  PubMed  Google Scholar 

  41. Chou, T.-F., K. Li, K.J. Frankowski, F.J. Schoenen, and R.J. Deshaies. 2013. Structure-activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. ChemMedChem 8: 297–312. https://doi.org/10.1002/cmdc.201200520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, X., L. Jiang, Y. Li, Q. Feng, X. Sun, Y. Wang, and M. Zhao. 2023. Discovery of novel benzylquinazoline molecules as p97/VCP inhibitors. Frontiers in Pharmacology 14: 1209060. https://doi.org/10.3389/fphar.2023.1209060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, J., S. Pittman, D. Dhavale, R. French, J.N. Patterson, M.S. Kaleelurrrahuman, Y. Sun, et al. 2022. VCP suppresses proteopathic seeding in neurons. Molecular Neurodegeneration 17: 30. https://doi.org/10.1186/s13024-022-00532-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ye, Y., W.K. Tang, T. Zhang, and D. Xia. 2017. A Mighty, “Protein Extractor” of the Cell: Structure and Function of the p97/CDC48 ATPase. Frontiers in Molecular Biosciences 4: 39. https://doi.org/10.3389/fmolb.2017.00039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meyer, H., M. Bug, and S. Bremer. 2012. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nature Cell Biology 14: 117–123. https://doi.org/10.1038/ncb2407.

    Article  CAS  PubMed  Google Scholar 

  46. Ahlstedt, B.A., R. Ganji, and M. Raman. 2022. The functional importance of VCP to maintaining cellular protein homeostasis. Biochemical Society Transactions 50: 1457–1469. https://doi.org/10.1042/BST20220648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ghalandary, M., Y. Li, T. Fröhlich, T. Magg, Y. Liu, M. Rohlfs, S. Hollizeck, et al. 2022. Valosin-containing protein-regulated endoplasmic reticulum stress causes NOD2-dependent inflammatory responses. Scientific Reports 12: 3906. https://doi.org/10.1038/s41598-022-07804-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, J.-M., W. Hongyu, W. Zhang, M.R. Blackburn, and J. Jin. 2014. The p97-UFD1L-NPL4 protein complex mediates cytokine-induced IκBα proteolysis. Molecular and Cellular Biology 34: 335–347. https://doi.org/10.1128/MCB.01190-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Custer, S.K., M. Neumann, L. Hongbo, A.C. Wright, and J.P. Taylor. 2010. Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. Human Molecular Genetics 19: 1741–1755. https://doi.org/10.1093/hmg/ddq050.

    Article  CAS  PubMed  Google Scholar 

  50. Bright, F., E.L. Werry, C. Dobson-Stone, O. Piguet, L.M. Ittner, G.M. Halliday, J.R. Hodges, et al. 2019. Neuroinflammation in frontotemporal dementia. Nature Reviews Neurology 15: 540–555. https://doi.org/10.1038/s41582-019-0231-z.

    Article  PubMed  Google Scholar 

  51. Blevins, H.M., X. Yiming, S. Biby, and S. Zhang. 2022. The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Frontiers in Aging Neuroscience 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yue, Y., N.R. Nabar, C. S. Shi, O. Kamenyeva, X. Xiao, and II-Y Hwang, M Wan, and JH Kehrl. 2018. SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death. Cell Death & Disease 9: 904. https://doi.org/10.1038/s41419-018-0917-y.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Institute on Aging (Grant number: R01AG031867), National Institute of Arthritis and Musculoskeletal and Skin Disease (Grant number: K24AR073317), National Institutes of Health(Grant number: NS110436) and National Institutes of Health (Grant number: NS097799).

Author information

Authors and Affiliations

Authors

Contributions

AS designed and performed the experiments, did the formal analysis, and wrote the original draft, DD, and PK provided Recombinant Alpha-synuclein fibrils used in Figs. 3 and 4 and CW conceptualized, guided the experiments, and reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Conrad C. Weihl.

Ethics declarations

Ethics Approval

All the experiments with animals were performed in accordance with the protocols approved by the Animal Studies Committee at Washington University School of Medicine.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4745 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Dhavale, D.D., Kotzbauer, P.T. et al. VCP Inhibition Augments NLRP3 Inflammasome Activation. Inflammation (2024). https://doi.org/10.1007/s10753-024-02013-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02013-6

KEY WORDS

Navigation