Skip to main content

Advertisement

Log in

MAPK14 as a key gene for regulating inflammatory response and macrophage M1 polarization induced by ferroptotic keratinocyte in psoriasis

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Psoriasis is a prevalent condition characterized by chronic inflammation, immune dysregulation, and genetic alterations, significantly impacting the well-being of affected individuals. Recently, a novel aspect of programmed cell death, ferroptosis, linked to iron metabolism, has come to light. This research endeavors to unveil novel diagnostic genes associated with ferroptosis in psoriasis, employing bioinformatic methods and experimental validation. Diverse analytical strategies, including "limma," Weighted Gene Co-expression Network Analysis (WGCNA), Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine Recursive Feature Elimination (SVM-RFE), and Random Forest (RF), were employed to pinpoint pivotal ferroptosis-related diagnostic genes (FRDGs) in the training datasets GSE30999, testing dataset GSE41662 and GSE14905. The discriminative potential of FRDGs in distinguishing between normal and psoriatic patients was gauged using Receiver Operating Characteristic (ROC) curves, while the functional pathways of FRDGs were scrutinized through Gene Set Enrichment Analysis (GSEA). Spearman correlation and ssGSEA analysis were applied to explore correlations between FRDGs and immune cell infiltration or oxidative stress-related pathways. The study identified six robust FRDGs — PPARD, MAPK14, PARP9, POR, CDCA3, and PDK4 — which collectively formed a model boasting an exceptional AUC value of 0.994. GSEA analysis uncovered their active involvement in psoriasis-related pathways, and substantial correlations with immune cells and oxidative stress were noted. In vivo, experiments confirmed the consistency of the six FRDGs in the psoriasis model with microarray results. In vitro, genetic knockdown or inhibition of MAPK14 using SW203580 in keratinocytes attenuated ferroptosis and reduced the expression of inflammatory cytokines. Furthermore, the study revealed that intercellular communication between keratinocytes and macrophages was augmented by ferroptotic keratinocytes, increased M1 polarization, and recruitment of macrophage was regulated by MAPK14. In summary, our findings unveil novel ferroptosis-related targets and enhance the understanding of inflammatory responses in psoriasis. Targeting MAPK14 signaling in keratinocytes emerges as a promising therapeutic approach for managing psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The series public data of GSE30999, GSE41662, and GSE162183 in the GEO database are available via the accession number. The corresponding authors can be contacted with questions about additional information in this study.

References

  1. Griffiths, C.E., and J.N. Barker. 2007. Pathogenesis and clinical features of psoriasis, 263–271. London, England: Lancet 370. https://doi.org/10.1016/S0140-6736(07)61128-3.

    Book  Google Scholar 

  2. Griffiths, C.E., A.W. Armstrong, J.E. Gudjonsson, and J.N. Barker. 2021. Psoriasis, 1301–1315. London, England: Lancet 397. https://doi.org/10.1016/S0140-6736(20)32549-6.

    Book  Google Scholar 

  3. Mease, P.J., J.B. Palmer, P. Hur, B.E. Strober, M. Lebwohl, C. Karki, G.W. Reed, C.J. Etzel, J.D. Greenberg, and P.S. Helliwell. 2019. Utilization of the validated Psoriasis Epidemiology Screening Tool to identify signs and symptoms of psoriatic arthritis among those with psoriasis: a cross-sectional analysis from the US-based Corrona Psoriasis Registry. Journal of the European Academy of Dermatology and Venereology 33 (5): 886–892. https://doi.org/10.1111/jdv.15443. PMID: 30663130; PMCID: PMC6593969.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Langley, R.G., G.G. Krueger, and C.E. Griffiths. 2005. Psoriasis: Epidemiology, clinical features, and quality of life. Annals of the Rheumatic Diseases 64 (Suppl 2): ii18–23; discussion ii24–5. https://doi.org/10.1136/ard.2004.033217. PMID: 15708928; PMCID: PMC1766861

  5. Orsmond, A., L. Bereza-Malcolm, T. Lynch, L. March, and M. Xue. 2021. Skin barrier dysregulation in psoriasis. International Journal of Molecular Sciences 22 (19): 10841. https://doi.org/10.3390/ijms221910841. PMID: 34639182; PMCID: PMC8509518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Rendon, A., and K. Schäkel. 2019. Psoriasis pathogenesis and treatment. International Journal of Molecular Sciences 20 (6): 1475. https://doi.org/10.3390/ijms20061475. PMID: 30909615; PMCID: PMC6471628.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Singh, R., S. Koppu, P.O. Perche, and S.R. Feldman. 2021. The cytokine mediated molecular pathophysiology of psoriasis and its clinical implications. International Journal of Molecular Sciences 22 (23): 12793. https://doi.org/10.3390/ijms222312793. PMID: 34884596; 10.1007/s10753-024-01994-8. PMCID: PMC8657643.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Deng, Y., C. Chang, and Q. Lu. 2016. The inflammatory response in psoriasis: a comprehensive review. Clinical Reviews in Allergy & Immunology 50 (3): 377–89. https://doi.org/10.1007/s12016-016-8535-x. PMID: 27025861.

    Article  CAS  Google Scholar 

  9. Huang, G., J. Yan, J. Zou, H. Chuxiang, D. Huang, Q. Huang, P. Chen, F. Zhang, and L. Gong. 2021. Fire needle therapy for blood stasis syndrome of plaque psoriasis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 100 (13): e25312. https://doi.org/10.1097/MD.0000000000025312. PMID: 33787623; PMCID: PMC8021280.

    Article  PubMed  Google Scholar 

  10. Dixon, S.J., K.M. Lemberg, M.R. Lamprecht, R. Skouta, E.M. Zaitsev, C.E. Gleason, D.N. Patel, et al. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149: 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gao, W., X. Wang, Y. Zhou, X. Wang, and Y. Yan. 2022. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduction and Targeted Therapy 7 (1): 196. https://doi.org/10.1038/s41392-022-01046-3. PMID: 35725836; PMCID: PMC9208265.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Lai, B., W. Chien-Hsiang, W. Chao-Yi, S.F. Luo, and J.H. Lai. 2022. Ferroptosis and autoimmune diseases. Frontiers in Immunology 13: 916664. https://doi.org/10.3389/fimmu.2022.916664. PMID: 35720308; PMCID: PMC9203688.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Li, P., M. Jiang, K. Li, H. Li, Y. Zhou, X. Xiao, Y. Xu, S. Krishfield, P.E. Lipsky, G.C. Tsokos, and X. Zhang. 2021. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nature Immunology 22 (9): 1107–1117. https://doi.org/10.1038/s41590-021-00993-3. Epub 2021 Aug 12. PMID: 34385713; PMCID: PMC8609402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chen, Y., J. Wang, J. Li, J. Zhu, R. Wang, Q. Xi, W. Hongya, T. Shi, and W. Chen. 2021. Astragalus polysaccharide prevents ferroptosis in a murine model of experimental colitis and human Caco-2 cells via inhibiting NRF2/HO-1 pathway. European Journal of Pharmacology 911: 174518. https://doi.org/10.1016/j.ejphar.2021.174518. Epub 2021 Sep 23 PMID: 34562468.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng, Q., M. Chen, M. Liu, X. Chen, L. Zhu, X. Jieying, J. Xue, W. Huaxiang, and D. Yan. 2022. Semaphorin 5A suppresses ferroptosis through activation of PI3K-AKT-mTOR signaling in rheumatoid arthritis. Cell Death & Disease 13 (7): 608. https://doi.org/10.1038/s41419-022-05065-4. Erratum in: Cell Death Dis. 2023 Mar 14;14(3):196. PMID: 35835748; PMCID: PMC9283415.

    Article  CAS  Google Scholar 

  16. Shou, Y., L. Yang, Y. Yang, and X. Jinhua. 2021. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation. In Cell Death and Disease 12, 1–10. US: Springer. https://doi.org/10.1038/s41419-021-04284-5.

    Chapter  Google Scholar 

  17. Mao, J., and X. Ma. 2022. Bioinformatics identification of ferroptosis-associated biomarkers and therapeutic compounds in psoriasis. Journal of Oncology 2022: 3818216. https://doi.org/10.1155/2022/3818216. PMID: 36276287; PMCID: PMC9581596.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Liu, L., and X.X. Kang. 2022. ACSL4 is overexpressed in psoriasis and enhances inflammatory responses by activating ferroptosis. Biochemical and Biophysical Research Communications 623: 1–8. https://doi.org/10.1016/j.bbrc.2022.07.041. Epub 2022 Jul 14 PMID: 35868067.

    Article  CAS  PubMed  Google Scholar 

  19. da Rosa, C., J.K. Joel, S. Tian, L.E. Tomalin, J.G. Krueger, and M. Suárez-Fariñas. 2017. Shrinking the psoriasis assessment gap: Early gene-expression profiling accurately predicts response to long-term treatment. The Journal of Investigative Dermatology 137 (2): 305–312. https://doi.org/10.1016/j.jid.2016.09.015. Epub 2016 Sep 22 PMID: 27667537.

    Article  CAS  Google Scholar 

  20. Bigler, J., H.A. Rand, K. Kerkof, M. Timour, and C.B. Russell. 2013. Cross-study homogeneity of psoriasis gene expression in skin across a large expression range. PLoS ONE 8 (1): e52242. https://doi.org/10.1371/journal.pone.0052242. Epub 2013 Jan 4. PMID: 23308107; PMCID: PMC3537625.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  21. Yao, Y., L. Richman, C. Morehouse, M. de los Reyes, B.W. Higgs, A. Boutrin, B. White, A. Coyle, J. Krueger, P.A. Kiener, and B. Jallal. 2008. Type I interferon: potential therapeutic target for psoriasis? PLoS One 3 (7): e2737. https://doi.org/10.1371/journal.pone.0002737.  Erratum in: PLoS ONE. 2009;4(3). https://doi.org/10.1371/annotation/fbcbcab9-2e87-4ec7-af6e-c6e9e64ad4b3. PMID: 18648529; PMCID: PMC2481274.

  22. Gao, Y., X. Yao, Y. Zhai, L. Li, H. Li, X. Sun, Y. Pei, T. Xue, Y. Li, and H. Yizhou. 2021. Single cell transcriptional zonation of human psoriasis skin identifies an alternative immunoregulatory axis conducted by skin resident cells. Cell Death & Disease 12 (5): 450. https://doi.org/10.1038/s41419-021-03724-6. PMID: 33958582; PMCID: PMC8102483.

    Article  CAS  Google Scholar 

  23. Langfelder, P., and S. Horvath. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 9: 559. https://doi.org/10.1186/1471-2105-9-559. PMID: 19114008; PMCID: PMC2631488.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zhou, N., X. Yuan, D. Qingsong, Z. Zhang, X. Shi, J. Bao, Y. Ning, and L. Peng. 2022. FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Research 51 (D1): D571–D582. https://doi.org/10.1093/nar/gkac935. PMID: 36305834; PMCID: PMC9825716.

    Article  CAS  PubMed Central  Google Scholar 

  25. Friedman, J., T. Hastie, and R. Tibshirani. 2010. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33: 1–22.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Huang, S., C. Nianguang, P.P. Pedro, S. Narrandes, Y. Wang, and W. Xu. 2018. Applications of Support Vector Machine (SVM) learning in cancer genomics. Cancer Genomics & Proteomics 15: 41–51. https://doi.org/10.21873/cgp.20063.

    Article  CAS  Google Scholar 

  27. Liu, L., F. Qingxian, H. Ding, H. Jiang, Z. Zhan, and Y. Lai. 2023. Combination of machine learning-based bulk and single-cell genomics reveals necroptosis-related molecular subtypes and immunological features in autism spectrum disorder. Frontiers in Immunology 14: 1139420. https://doi.org/10.3389/fimmu.2023.1139420. PMID: 37168851; PMCID: PMC10165081.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wang, H., F. Yang, and Z. Luo. 2016. An experimental study of the intrinsic stability of random forest variable importance measures. BMC Bioinformatics 17: 60. https://doi.org/10.1186/s12859-016-0900-5. PMID: 26842629; PMCID: PMC4739337.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Yu, G., L.G. Wang, Y. Han, and Q.Y. He. 2012. lusterProfiler: An R package for comparing biological themes among gene clusters. A Journal of Integrative Biology 16: 284–287. https://doi.org/10.1089/omi.2011.0118.

    Article  CAS  PubMed  Google Scholar 

  30. Barbie, D.A., P. Tamayo, J.S. Boehm, S.Y. Kim, S.E. Moody, I.F. Dunn, A.C. Schinzel, et al. 2019. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462: 108–112. https://doi.org/10.1038/nature08460.

    Article  ADS  CAS  Google Scholar 

  31. Wishart, D.S., Y.D. Feunang, A.C. Guo, E.J. Lo, A. Marcu, J.R. Grant, T. Sajed, et al. 2018. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1): D1074–D1082. https://doi.org/10.1093/nar/gkx1037. PMID: 29126136; PMCID: PMC5753335.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, Qiang, Ulrich Mrowietz, and Martin Rostami-Yazdi. 2009. Oxidative stress in the pathogenesis of psoriasis. Free radical Biology & Medicine 47 (7): 891–905. https://doi.org/10.1016/j.freeradbiomed.2009.06.033. Epub 2009 Jul 3. PMID: 19577640.

    Article  CAS  Google Scholar 

  33. Lin, X., and T. Huang. 2016. Oxidative stress in psoriasis and potential therapeutic use of antioxidants. Free Radical Research 50 (6): 585–95. https://doi.org/10.3109/10715762.2016.1162301. Epub 2016 Apr 21 PMID: 27098416.

    Article  CAS  PubMed  Google Scholar 

  34. Medovic, M.V., V.L. Jakovljevic, V.I. Zivkovic, N.S. Jeremic, J.N. Jeremic, S.B. Bolevich, A.B. Ravic Nikolic, V.M. Milicic, and I.M. Srejovic. 2022. Psoriasis between autoimmunity and oxidative stress: Changes induced by different therapeutic approaches. Oxidative Medicine and Cellular Longevity 2022: 2249834. https://doi.org/10.1155/2022/2249834. PMID: 35313642; PMCID: PMC8934232.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Zhu, J., Y. Xiong, Y. Zhang, J. Wen, N. Cai, K. Cheng, H. Liang, and W. Zhang. 2020. The molecular mechanisms of regulating oxidative stress-induced ferroptosis and therapeutic strategy in tumors. Oxidative Medicine and Cellular Longevity 2020: 8810785. https://doi.org/10.1155/2020/8810785. PMID: 33425217; PMCID: PMC7772020.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ren, Jia-Xin., X.L. Chao Li, Q. Yan, Y. Yang. Yang, and Z.N. Guo. 2021. Crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke: Possible targets and molecular mechanisms. Oxidative Medicine and Cellular Longevity 2021: 6643382. https://doi.org/10.1155/2021/6643382. PMID: 34055196; PMCID: PMC8133868.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zheng, T., W. Zhao, H. Li, S. Xiao, H. Ran, M. Han, H. Liu, et al. 2018. p38α signaling in Langerhans cells promotes the development of IL-17-producing T cells and psoriasiform skin inflammation. Science Signaling 11 (521): eaao1685. https://doi.org/10.1126/scisignal.aao1685. PMID: 29535261.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, D., Y. Li, D. Chunyan, L. Sang, L. Liu, Y. Li, F. Wang, et al. 2022. Evidence of pyroptosis and ferroptosis extensively involved in autoimmune diseases at the single-cell transcriptome level. Journal of Translational Medicine 20 (1): 363. https://doi.org/10.1186/s12967-022-03566-6. PMID: 35962439; PMCID: PMC9373312.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Wu, M.N., D.M. Zhou, C.Y. Jiang, W.W. Chen, J.C. Chen, Y.M. Zou, T. Han, and L.J.M. Zhou. 2022. Genetic analysis of potential biomarkers and therapeutic targets in ferroptosis from psoriasis. Frontiers in Immunology 13: 1104462. https://doi.org/10.3389/fimmu.2022.1104462. PMID: 36685512; PMCID: PMC9846571.

    Article  CAS  PubMed  Google Scholar 

  40. Petr, M., P. Stastny, A. Zajac, J.J. Tufano, and A. Maciejewska-Skrendo. 2018. The role of peroxisome proliferator-activated receptors and their transcriptional coactivators gene variations in human trainability: a systematic review. International Journal of Molecular Sciences 19 (5): 1472. https://doi.org/10.3390/ijms19051472. PMID: 29762540; PMCID: PMC5983571.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Karpe, Fredrik, and Ewa E. Ehrenborg. 2009. PPARdelta in humans: Genetic and pharmacological evidence for a significant metabolic function. Current Opinion in Lipidology 20 (4): 333–6. https://doi.org/10.1097/MOL.0b013e32832dd4b1. PMID: 19512923.

    Article  CAS  PubMed  Google Scholar 

  42. Dou, J., L. Zhang, X. Xie, L. Ye, C. Yang, L. Wen, C. Shen, et al. 2017. Integrative analyses reveal biological pathways and key genes in psoriasis. The British Journal of Dermatology 177 (5): 1349–1357. https://doi.org/10.1111/bjd.15682. Epub 2017 Oct 25 PMID: 28542811.

    Article  CAS  PubMed  Google Scholar 

  43. Blunder, S., T. Krimbacher, V. Moosbrugger-Martinz, R. Gruber, M. Schmuth, and S. Dubrac. 2021. Keratinocyte-derived IL-1β induces PPARG downregulation and PPARD upregulation in human reconstructed epidermis following barrier impairment. Experimental Dermatology 30 (9): 1298–1308. https://doi.org/10.1111/exd.14323. Epub 2021 Mar 18. PMID: 33683743; PMCID: PMC8451818.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Zou, R.C., Z.T. Guo, D. Wei, Z.T. Shi, Z.C. Ye, G. Zhai, C. Zhong, B. Tang, L. Wang, and J.Y. Ge. 2020. Downregulation of CDCA3 expression inhibits tumor formation in pancreatic cancer. Neoplasma 67 (6): 1223–1232. https://doi.org/10.4149/neo_2020_200411N388. Epub 2020 Jul 23 PMID: 32701354.

    Article  CAS  PubMed  Google Scholar 

  45. Gong, S., B. Bai, G. Sun, H. Jin, and Z. Zhang. 2022. CDCA3 exhibits a role in promoting the progression of ovarian cancer. Tissue & Cell 79: 101903. https://doi.org/10.1016/j.tice.2022.101903. Epub 2022 Aug 24 PMID: 36081320.

    Article  CAS  Google Scholar 

  46. Gu, P., Z. Minhao, Z. Jin, X. He, and D. Yang. 2022. Suppression of CDCA3 inhibits prostate cancer progression via NF-κB/cyclin D1 signaling inactivation and p21 accumulation. Oncology Reports 47 (2): 42. https://doi.org/10.3892/or.2021.8253. Epub 2021 Dec 31. PMID: 34970697; PMCID: PMC8759108.

    Article  CAS  PubMed  Google Scholar 

  47. Hong, T., G. Lei, X. Chen, H. Li, X. Zhang, W. Nayiyuan, Y. Zhao, Y. Zhang, and J. Wang. 2021. PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biology 42: 101928. https://doi.org/10.1016/j.redox.2021.101928. Epub 2021 Mar 5. PMID: 33722571; PMCID: PMC8113041.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Riddick, D.S., C. Xinxin Ding, R. Wolf, T.D. Porter, A.V. Pandey, Q.Y. Zhang, G. Jun, et al. 2013. NADPH-cytochrome P450 oxidoreductase: Roles in physiology, pharmacology, and toxicology. Drug Metabolism and Disposition 41 (1): 12–23. https://doi.org/10.1124/dmd.112.048991. Epub 2012 Oct 19. PMID: 23086197; PMCID: PMC3533425.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zou, Y., H. Li, E.T. Graham, A.A. Deik, J.K. Eaton, W. Wang, G. Sandoval-Gomez, C. Clish, J.G. Doench, and S.L. Schreiber. 2020. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nature Chemical Biology 16 (3): 302–309. https://doi.org/10.1038/s41589-020-0472-6. Epub 2020 Feb 17. Erratum in: Nat Chem Biol. 2021 Apr;17(4):501. PMID: 32080622; PMCID: PMC7353921.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Yan, B., Y. Ai, Q. Sun, Y. Ma, Y. Cao, J. Wang, Z. Zhang, and X. Wang. 2021. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Molecular Cell 81 (2): 355–369.e10. https://doi.org/10.1016/j.molcel.2020.11.024. Epub 2020 Dec 14 PMID: 33321093.

    Article  CAS  PubMed  Google Scholar 

  51. Sugden, M.C., and M.J. Holness. 2006. Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. In Archives of Physiology and Biochemistry 112 (3): 139–49. https://doi.org/10.1080/13813450600935263. PMID: 17132539.

    Article  CAS  Google Scholar 

  52. Leem, J., and I. Lee. 2016. Mechanisms of vascular calcification: The pivotal role of pyruvate dehydrogenase kinase 4. Endocrinology and Metabolism (Seoul, Korea) 31 (1): 52–61. https://doi.org/10.3803/EnM.2016.31.1.52. PMID: 26996423; PMCID: PMC4803561.

    Article  CAS  PubMed  Google Scholar 

  53. Song, X., J. Liu, F. Kuang, X. Chen, J. Herbert 3rd., R.K. Zeh, G. Kroemer, Y. Xie, and D. Tang. 2021. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Reports 34 (8): 108767. https://doi.org/10.1016/j.celrep.2021.108767. PMID: 33626342.

    Article  CAS  PubMed  Google Scholar 

  54. Madkour, M.M., H.S. Anbar, and M.L. El-Gamal. 2021. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors. European Journal of Medicinal Chemistry 213: 113216. https://doi.org/10.1016/j.ejmech.2021.113216. Epub 2021 Jan 22 PMID: 33524689.

    Article  CAS  PubMed  Google Scholar 

  55. Yang, J., J. Mo, J. Dai, C. Ye, W. Cen, X. Zheng, L. Jiang, and L. Ye. 2021. Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer. Cell Death & Disease 12 (11): 1079. https://doi.org/10.1038/s41419-021-04367-3. PMID: 34775496; PMCID: PMC8590697.

    Article  CAS  Google Scholar 

  56. Lin, Y., X. Shen, Y. Ke, C. Lan, X. Chen, B. Liang, Y. Zhang, and S. Yan. 2022. Activation of osteoblast ferroptosis via the METTL3/ASK1-p38 signaling pathway in high glucose and high fat (HGHF)-induced diabetic bone loss. FASEB Journal 36 (3): e22147. https://doi.org/10.1096/fj.202101610R. PMID: 35104016.

    Article  CAS  PubMed  Google Scholar 

  57. Chen, W., W. Yang, C. Zhang, T. Liu, J. Zhu, H. Wang, T. Li, et al. 2022. Modulation of the p38 MAPK pathway by anisomycin promotes ferroptosis of hepatocellular carcinoma through phosphorylation of H3S10. Oxidative Medicine and Cellular Longevity 2022: 6986445. https://doi.org/10.1155/2022/6986445. PMID: 36466092; PMCID: PMC9715334.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Ondet, T., B. Muscatelli-Groux, C. Coulouarn, S. Robert, T. Gicquel, A. Bodin, V. Lagente, and J. Grimaud. 2017. The release of pro-inflammatory cytokines is mediated via mitogen-activated protein kinases rather than by the inflammasome signalling pathway in keratinocytes. Clinical and Experimental Pharmacology & Physiology 44 (7): 827–838. https://doi.org/10.1111/1440-1681.12765. PMID: 28425217.

    Article  CAS  Google Scholar 

  59. Yang, L., L. Jiang, X. Sun, J. Li, N. Wang, X. Liu, X. Yao, et al. 2022. DEHP induces ferroptosis in testes via p38α-lipid ROS circulation and destroys the BTB integrity. Food and Chemical Toxicology 164: 113046. https://doi.org/10.1016/j.fct.2022.113046. Epub 2022 Apr 18 PMID: 35447293.

    Article  CAS  PubMed  Google Scholar 

  60. Kamata, M., and Y. Tada. 2022. Dendritic Cells and Macrophages in the Pathogenesis of Psoriasis. Frontiers in Immunology 13: 941071. https://doi.org/10.3389/fimmu.2022.941071. PMID: 35837394; PMCID: PMC9274091.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Chen, J., F. Yuxuan, and S. Xiong. 2023. Keratinocyte derived HMGB1 aggravates psoriasis dermatitis via facilitating inflammatory polarization of macrophages and hyperproliferation of keratinocyte. Molecular Immunology 163: 1–12. https://doi.org/10.1016/j.molimm.2023.09.004. Epub 2023 Sep 12 PMID: 37703591.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks a lot to the authors for their contribution to available gene expression profiles of microarrays and sc-RNA sequencing datasets in the GEO database.

Funding

The authors are grateful for the financial support received from The Science and Technology Project of Ganzhou (202101034530); The Foundation of Technology Innovation Team of First Affiliated Hospital of Gannan Medical University (2021CXTD-08); First Affiliated Hospital of Gannan Medical University, Doctor Start-up Fund (QD088).

Author information

Authors and Affiliations

Authors

Contributions

Lin Zhou wrote the manuscript and Yingdong Zhong conducted bioinformatic analysis, they were considered as the co-first authors; Chaowei Li revised the manuscript; Yu Zhou and Xi Liu collected data from public databases and participated in building a psoriasis model; Lincai Li, and Zhengwei Zou cultured cell lines and carried out in vivo and vitro tests. Zhihui Zhong and Junsong Ye designed and organized the study. All authors contributed to the article and approved the final manuscript.

Corresponding authors

Correspondence to Zhihui Zhong or Junsong Ye.

Ethics declarations

Conflict of interest

The authors all declare no potential conflicts of interest.

Ethics statement

The animal study was reviewed and approved by the Ethics Committee of First Affiliated Hospital of Gannan Medical University (No.LLSC-2023031501). The human data involved in this study was obtained from public datasets and did not involve the acquisition of tissue samples from humans, and the Ethics Committee of First Affiliated Hospital of Gannan Medical University agreed to waive human ethical approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zhong, Y., Li, C. et al. MAPK14 as a key gene for regulating inflammatory response and macrophage M1 polarization induced by ferroptotic keratinocyte in psoriasis. Inflammation (2024). https://doi.org/10.1007/s10753-024-01994-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-01994-8

KEYWORDS

Navigation