Skip to main content

Advertisement

Log in

Tangeretin Attenuates Cerebral Ischemia–Reperfusion-Induced Neuronal Pyroptosis by Inhibiting AIM2 Inflammasome Activation via Regulating NRF2

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Pyroptosis is closely involved in the pathopoiesis of cerebral ischemia and reperfusion (I/R) injury which seriously dangers human’s life. Studies report that tangeretin (TANG), which is enriched in the peel of Citrus reticulata, has neuroprotective effects. Here, we explored whether absent in melanoma 2 (AIM2) inflammasome-mediated pyroptosis is involved in the cerebral I/R injury and the protective mechanism of TANG against cerebral I/R injury. In this study, we found that TANG treatment effectively alleviated I/R-induced brain injury and inhibited neuronal pyroptosis in an in vivo mice model with middle cerebral artery occlusion/reperfusion (MCAO/R) injury and in an in vitro hippocampal HT22 cell model with oxygen–glucose deprivation and reoxygenation (OGD/R) injury. Furthermore, we found TANG inhibited cerebral I/R-induced neuronal AIM2 inflammasome activation in vivo and in vitro via regulating nuclear factor E2-related factor 2 (NRF2). Moreover, administration of ML385, a chemical inhibitor of NRF2, notably blocked the neuroprotective effects of TANG against cerebral I/R injury. In conclusion, TANG attenuates cerebral I/R-induced neuronal pyroptosis by inhibiting AIM2 inflammasome activation via regulating NRF2. These findings indicate TANG is a potential therapeutic agent for cerebral I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets and materials used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

I/R:

Ischemia and reperfusion

TANG:

Tangeretin

AIM2:

Absent in melanoma 2

NRF2:

Nuclear factor E2-related factor 2

ASC:

Apoptosis-associated speck-like protein containing a caspase recruitment domain

GSDMD:

Gasdermin D

IL‑1β:

Interleukin‑1β

CCA:

Common carotid artery

mNSS:

Modified Neurological Severity Score

CAT:

Catalase

HO1:

Heme oxygenase 1

NQO1:

NAD(P)H dehydrogenase, quinone 1

References

  1. Campbell, B.C.V., and P. Khatri. 2020. Stroke. Lancet 396: 129–142.

    Article  PubMed  Google Scholar 

  2. Liang, T.Y., S.Y. Peng, M. Ma, H.Y. Li, Z. Wang, and G. Chen. 2021. Protective effects of sevoflurane in cerebral ischemia reperfusion injury: A narrative review. Medical Gas Research 11: 152–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rao, Z., Y. Zhu, P. Yang, Z. Chen, Y. Xia, C. Qiao, W. Liu, H. Deng, J. Li, P. Ning, and Z. Wang. 2022. Pyroptosis in inflammatory diseases and cancer. Theranostics 12: 4310–4329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Broz, P., and V.M. Dixit. 2016. Inflammasomes: Mechanism of assembly, regulation and signalling. Nature Reviews Immunology 16: 407–420.

    Article  CAS  PubMed  Google Scholar 

  5. Wright, S.S., S.O. Vasudevan, and V.A. Rathinam. 2022. Mechanisms and consequences of noncanonical inflammasome-mediated pyroptosis. Journal of Molecular Biology 434: 167245.

    Article  CAS  PubMed  Google Scholar 

  6. Hsu, S.K., C.Y. Li, I.L. Lin, W.J. Syue, Y.F. Chen, K.C. Cheng, Y.N. Teng, Y.H. Lin, C.H. Yen, and C.C. Chiu. 2021. Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment. Theranostics 11: 8813–8835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wei, X., F. Xie, X. Zhou, Y. Wu, H. Yan, T. Liu, J. Huang, F. Wang, F. Zhou, and L. Zhang. 2022. Role of pyroptosis in inflammation and cancer. Cellular & Molecular Immunology 19: 971–992.

    Article  CAS  Google Scholar 

  8. Stutz, A., G.L. Horvath, B.G. Monks, and E. Latz. 2013. ASC speck formation as a readout for inflammasome activation. Methods in Molecular Biology 1040: 91–101.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, C., and P. Xu. 2022. Activation and pharmacological regulation of inflammasomes. Biomolecules 12.

  10. Guo, Z., S. Yu, X. Chen, R. Ye, W. Zhu, and X. Liu. 2016. NLRP3 is involved in ischemia/reperfusion injury. CNS & neurological disorders drug targets 15: 699–712. https://doi.org/10.2174/1871527315666160321111829.

    Article  CAS  Google Scholar 

  11. Yao, S., S. Hu, C. Zhang, Q. Zhou, H. Wang, Y. Yang, C. Liu, and H. Ding. 2022. Ginsenoside Rd attenuates cerebral ischemia/reperfusion injury by exerting an anti-pyroptotic effect via the miR-139–5p/FoxO1/Keap1/NRF2 axis,\. International Immunopharmacology 105: 108582. https://doi.org/10.1016/j.intimp.2022.108582.

  12. Zhao, J., X. Piao, Y. Wu, S. Liang, F. Han, Q. Liang, S. Shao, and D. Zhao. 2020. Cepharanthine attenuates cerebral ischemia/reperfusion injury by reducing NLRP3 inflammasome-induced inflammation and oxidative stress via inhibiting 12/15-LOX signaling. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 127: 110151. https://doi.org/10.1016/j.biopha.2020.110151.

  13. Xiao, L., Z. Dai, W. Tang, C. Liu, and B. Tang. 2021. Astragaloside IV alleviates cerebral ischemia-reperfusion injury through NLRP3 inflammasome-mediated pyroptosis inhibition via activating NRF2. Oxidative medicine and cellular longevity 2021: 9925561. https://doi.org/10.1155/2021/9925561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ye, Y., T. Jin, X. Zhang, Z. Zeng, B. Ye, J. Wang, Y. Zhong, X. Xiong, and L. Gu. 2019. Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-kappaB signaling pathway. Frontiers in cellular neuroscience 13: 553. https://doi.org/10.3389/fncel.2019.00553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lugrin, J., and F. Martinon. 2018. The AIM2 inflammasome: Sensor of pathogens and cellular perturbations. Immunological Reviews 281: 99–114. https://doi.org/10.1111/imr.12618.

    Article  CAS  PubMed  Google Scholar 

  16. Braidy, N., S. Behzad, S. Habtemariam, T. Ahmed, M. Daglia, S.M. Nabavi, E. Sobarzo-Sanchez, and S.F. Nabavi. 2017. Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and tangeretin in Alzheimer’s and Parkinson’s disease. CNS & Neurological Disorders: Drug Targets 16: 387–397.

    CAS  Google Scholar 

  17. Sedik, A.A., and R. Elgohary. 2023. Neuroprotective effect of tangeretin against chromium-induced acute brain injury in rats: targeting NRF2 signaling pathway, inflammatory mediators, and apoptosis. Inflammopharmacology.

  18. Cox, D.J., R.H. Field, D.G. Williams, M. Baran, A.G. Bowie, C. Cunningham, and A. Dunne. 2015. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia 63: 812–825.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lammert, C.R., E.L. Frost, C.E. Bellinger, A.C. Bolte, C.A. McKee, M.E. Hurt, M.J. Paysour, H.E. Ennerfelt, and J.R. Lukens. 2020. AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature 580: 647–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, P.J., H.Y. Liu, T.N. Huang, and Y.P. Hsueh. 2016. AIM 2 inflammasomes regulate neuronal morphology and influence anxiety and memory in mice. Science and Reports 6: 32405.

    Article  CAS  Google Scholar 

  21. Kim, H., J.S. Seo, S.Y. Lee, K.T. Ha, B.T. Choi, Y.I. Shin, Y. Ju Yun, and H.K. Shin. 2020. AIM2 inflammasome contributes to brain injury and chronic post-stroke cognitive impairment in mice. Brain, Behavior, and Immunity 87: 765–776.

  22. Xu, S.Y., H.J. Bian, S. Shu, S.N. Xia, Y. Gu, M.J. Zhang, Y. Xu, and X. Cao. 2021. AIM2 deletion enhances blood-brain barrier integrity in experimental ischemic stroke. CNS Neuroscience & Therapeutics 27: 1224–1237.

    Article  CAS  Google Scholar 

  23. Singh, B., J.P. Singh, A. Kaur, and N. Singh. 2020. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International 132: 109114.

    Article  CAS  PubMed  Google Scholar 

  24. Shi, Y., J. Chen, S. Li, Y. Wu, C. Yu, L. Ni, J. Xiao, Z. Shao, H. Zhu, J. Wang, X. Wang, and X. Zhang. 2022. Tangeretin suppresses osteoarthritis progression via the NRF2/NF-kappaB and MAPK/NF-kappaB signaling pathways. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology. 98: 153928. https://doi.org/10.1016/j.phymed.2022.153928.

  25. Chen, B., J. Luo, Y. Han, H. Du, J. Liu, W. He, J. Zhu, J. Xiao, J. Wang, Y. Cao, H. Xiao, and M. Song. 2021. Dietary tangeretin alleviated dextran sulfate sodium-induced colitis in mice via inhibiting inflammatory response, restoring intestinal barrier function, and modulating gut microbiota. Journal of Agriculture and Food Chemistry 69: 7663–7674. https://doi.org/10.1021/acs.jafc.1c03046.

    Article  CAS  Google Scholar 

  26. Shiroorkar, P.N., O. Afzal, I. Kazmi, F.A. Al-Abbasi, A.S.A. Altamimi, K.S. Gubbiyappa, N. Sreeharsha. 2020. Cardioprotective effect of tangeretin by inhibiting PTEN/AKT/mTOR axis in experimental sepsis-induced myocardial dysfunction. Molecules 25. https://doi.org/10.3390/molecules25235622.

  27. Yang, J.S., X.H. Wu, H.G. Yu, and L.S. Teng. 2017. Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats. Inflammopharmacology 25: 471–484.

    Article  CAS  PubMed  Google Scholar 

  28. Yang, T., C. Feng, D. Wang, Y. Qu, Y. Yang, Y. Wang, and Z. Sun. 2020. Neuroprotective and anti-inflammatory effect of tangeretin against cerebral ischemia-reperfusion injury in rats. Inflammation 43: 2332–2343.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Y., R. Jin, J. Chen, J. Cao, J. Xiao, X. Li, and C. Sun. 2021. Tangeretin maintains antioxidant activity by reducing CUL3 mediated NRF2 ubiquitination. Food Chemistry 365: 130470.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, J., Y. Rong, C. Ji, C. Lv, D. Jiang, X. Ge, F. Gong, P. Tang, W. Cai, W. Liu, and J. Fan. 2020. MicroRNA-421-3p-abundant small extracellular vesicles derived from M2 bone marrow-derived macrophages attenuate apoptosis and promote motor function recovery via inhibition of mTOR in spinal cord injury. Journal of Nanobiotechnology 18: 72.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yu, Z., L. Zheng, Y. Geng, Y. Zhang, Y. Wang, G. You, M. Cai, M. Li, X. Cheng, and J. Zan. 2023. FTO alleviates cerebral ischemia/reperfusion-induced neuroinflammation by decreasing cGAS mRNA stability in an m6A-dependent manner. Cellular Signalling 109: 110751.

    Article  CAS  PubMed  Google Scholar 

  32. Siracusa, R., I. Paterniti, M. Cordaro, R. Crupi, G. Bruschetta, M. Campolo, S. Cuzzocrea, and E. Esposito. 2018. Neuroprotective effects of temsirolimus in animal models of Parkinson’s disease. Molecular neurobiology 55: 2403–2419. https://doi.org/10.1007/s12035-017-0496-4.

    Article  CAS  PubMed  Google Scholar 

  33. Yang, Y., P. Liu, L. Chen, Z. Liu, H. Zhang, J. Wang, X. Sun, W. Zhong, N. Wang, K. Tian, and J. Zhao. 2013. Therapeutic effect of Ginkgo biloba polysaccharide in rats with focal cerebral ischemia/reperfusion (I/R) injury. Carbohydrate Polymers 98: 1383–1388.

    Article  CAS  PubMed  Google Scholar 

  34. Luo, J., J. Chen, C. Yang, J. Tan, J. Zhao, N. Jiang, and Y. Zhao. 2021. 6-Gingerol protects against cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome and apoptosis via TRPV1 / FAF1 complex dissociation-mediated autophagy. International Immunopharmacology 100: 108146.

    Article  CAS  PubMed  Google Scholar 

  35. Hakimi, M., A. Peters, A. Becker, D. Bockler, and S. Dihlmann. 2014. Inflammation-related induction of absent in melanoma 2 (AIM2) in vascular cells and atherosclerotic lesions suggests a role in vascular pathogenesis. Journal of Vascular Surgery 59: 794–803. https://doi.org/10.1016/j.jvs.2013.03.048.

    Article  PubMed  Google Scholar 

  36. Lozano-Ruiz, B., V. Bachiller, I. Garcia-Martinez, P. Zapater, I. Gomez-Hurtado, A. Moratalla, P. Gimenez, P. Bellot, R. Frances, J. Such, and J.M. Gonzalez-Navajas. 2015. Absent in melanoma 2 triggers a heightened inflammasome response in ascitic fluid macrophages of patients with cirrhosis. Journal of hepatology 62: 64–71. https://doi.org/10.1016/j.jhep.2014.08.027.

    Article  CAS  PubMed  Google Scholar 

  37. He, F., X. Ru, and T. Wen. 2020. NRF2 a transcription factor for stress response and beyond. International Journal of Molecular Sciences 21. https://doi.org/10.3390/ijms21134777.

  38. Hu, Q., T. Zuo, L. Deng, S. Chen, W. Yu, S. Liu, J. Liu, X. Wang, X. Fan, and Z. Dong. 2022. beta-Caryophyllene suppresses ferroptosis induced by cerebral ischemia reperfusion via activation of the NRF2/HO-1 signaling pathway in MCAO/R rats. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 102: 154112. https://doi.org/10.1016/j.phymed.2022.154112.

  39. Liu, D., H. Wang, Y. Zhang, and Z. Zhang. 2020. Protective effects of chlorogenic acid on cerebral ischemia/reperfusion injury rats by regulating oxidative stress-related Nrf2 pathway. Drug design, development and therapy 14: 51–60. https://doi.org/10.2147/DDDT.S228751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fusco, R., M. Cordaro, R. Siracusa, A.F. Peritore, E. Gugliandolo, T. Genovese, R. D’Amico, R. Crupi, A. Smeriglio, G. Mandalari, D. Impellizzeri, S. Cuzzocrea, and R. Di Paola. 2020. Consumption of Anacardium occidentale L. (cashew nuts) inhibits oxidative stress through modulation of the Nrf2/HO-1 and NF-kB pathways. Molecules 25. https://doi.org/10.3390/molecules25194426.

  41. Canning, P., F.J. Sorrell, and A.N. Bullock. 2015. Structural basis of Keap1 interactions with Nrf2. Free radical biology & medicine 88: 101–107. https://doi.org/10.1016/j.freeradbiomed.2015.05.034.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Science and Technology Planning Project of Guangzhou (202201010966), the Science and Technology Commissioner Project of Guangdong Province (GDKTP2021003800), the fifth batch of national TCM clinical outstanding talents training project (2021271), jointly funded project by the city, schools (institutes), and enterprises of Guangzhou Science and Technology Bureau (SL2022A03J00212), and Guangdong Bureau of Traditional Chinese Medicine Project (20231017).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, experimental design, data curation, and original draft preparation: GY, LZ, YZ, YW, WG, PT, HL, KV, YZ, and JZ. Investigation and manuscript review: GY, LZ, HL, KV, YZ, and JZ. Supervision and funding acquisition: LZ, KV, YZ, and JZ. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jie Zan.

Ethics declarations

Ethics Approval

The animal study was reviewed and approved by the Institutional Animal Care and Use Committee of Guangdong Second Provincial General Hospital.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, G., Zheng, L., Zhang, Y. et al. Tangeretin Attenuates Cerebral Ischemia–Reperfusion-Induced Neuronal Pyroptosis by Inhibiting AIM2 Inflammasome Activation via Regulating NRF2. Inflammation 47, 145–158 (2024). https://doi.org/10.1007/s10753-023-01900-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01900-8

KEY WORDS

Navigation