Skip to main content

Advertisement

Log in

Tolerized Microglia Protect Neurons Against Endotoxin-Induced TNF-α Production via an LBP-Dependent Intracellular p38 MAPK Signaling Pathway

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The development of microglial endotoxin tolerance (ET) is a critical event in protecting neurons against excessive immune responses when microglia are administered two consecutive lipopolysaccharide (LPS) challenges. However, the intrinsic mechanisms of microglia shape ET programs and protect neurons remain unclear. This study aimed to determine whether extracellular autocrine cascades or intracellular signaling pathways are involved in ET microglia-mediated tumor necrosis factor-alpha (TNF-α) reduction and neuroprotection. Neuron-glia cultures composed of astroglia, neurons, and microglia were performed in different conditions: with or without serum or LPS-binding proteins (LBP), along with an induction approach of ET. Enzyme-linked immunosorbent assay results revealed that LPS induced TNF-α tolerance of microglia in an LBP-dependent manner. Furthermore, we determined whether the early pro-inflammatory cytokines induced by LPS might contribute to the development of microglial ET. Our data showed that the neutralization of TNF-α using an anti-TNF-α antibody had no change in the TNF-α tolerance of microglia during the ET challenge. Furthermore, pre-incubation of TNF-α, interleukin-1 beta, and prostaglandin E2 failed to induce any TNF-α tolerance in microglia after LPS treatment. Moreover, using three specific chemical inhibitors that respectively blocked the activities of the mitogen-activated protein kinases (MAPKs) namely p38, c-Jun N-terminal kinase and extracellular signal-related kinases revealed that inhibition of p38 MAPK by SB203580 disrupted the tolerated microglia-mediated TNF-α reduction and neuroprotection. In summary, our findings demonstrated that the LPS pre-treatment immediately programmed the microglial ET to prevent endotoxin-induced TNF-α production and neuronal damage through the intracellular p38 MAPK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

AVAILABILITY OF DATA AND MATERIALS

All data and materials as well as software application information are available in the manuscript or are available from the corresponding author upon reasonable request.

References

  1. Block, M.L., L. Zecca, and J.S. Hong. 2007. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nature Reviews Neuroscience 8: 57–69.

    CAS  PubMed  Google Scholar 

  2. Hansen, D.V., J.E. Hanson, and M. Sheng. 2018. Microglia in Alzheimer's disease. Journal of Cell Biology 217: 459–472.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wood, H. 2022. alpha-Synuclein-activated microglia are implicated in PD pathogenesis. Nature Reviews. Neurology 18: 188.

    CAS  PubMed  Google Scholar 

  4. Clarke, B.E., and R. Patani. 2020. The microglial component of amyotrophic lateral sclerosis. Brain 143: 3526–3539.

    PubMed  PubMed Central  Google Scholar 

  5. Yong, V.W. 2022. Microglia in multiple sclerosis: Protectors turn destroyers. Neuron 110: 3534–3548.

    CAS  PubMed  Google Scholar 

  6. Chu, C.H., S.H. Chen, Q. Wang, R. Langenbach, H. Li, D. Zeldin, et al. 2015. PGE2 Inhibits IL-10 Production via EP2-Mediated beta-arrestin signaling in neuroinflammatory condition. Molecular Neurobiology 52: 587–600.

    CAS  PubMed  Google Scholar 

  7. Rosenblum, M.D., K.A. Remedios, and A.K. Abbas. 2015. Mechanisms of human autoimmunity. The Journal of Clinical Investigation 125: 2228–2233.

    PubMed  PubMed Central  Google Scholar 

  8. Rodriguez, A.M., J. Rodriguez, and G.H. Giambartolomei. 2022. Microglia at the crossroads of pathogen-induced neuroinflammation. ASN Neuro 14: 17590914221104566.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gao, Y., D. Tu, R. Yang, C.H. Chu, J.S. Hong, and H.M. Gao. 2020. Through reducing ROS production, IL-10 suppresses caspase-1-dependent IL-1beta maturation, thereby preventing chronic neuroinflammation and neurodegeneration. International Journal Molecular Sciences 21.

  10. Burguillos, M.A., T. Deierborg, E. Kavanagh, A. Persson, N. Hajji, A. Garcia-Quintanilla, et al. 2011. Caspase signalling controls microglia activation and neurotoxicity. Nature 472: 319–324.

    CAS  PubMed  Google Scholar 

  11. Hilliard, A., P. Mendonca, and K.F.A. Soliman. 2020. Involvement of NFkB and MAPK signaling pathways in the preventive effects of Ganoderma lucidum on the inflammation of BV-2 microglial cells induced by LPS. Journal of Neuroimmunology 345.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Xing, B., A.D. Bachstetter, and L.J. Van Eldik. 2011. Microglial p38alpha MAPK is critical for LPS-induced neuron degeneration, through a mechanism involving TNFalpha. Molecular Neurodegeneration 6: 84.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang, J.B., D.J. Park, M.A. Shah, M.O. Kim, and P.O. Koh. 2019. Lipopolysaccharide induces neuroglia activation and NF-kappaB activation in cerebral cortex of adult mice. Laboratory Animal Research 35: 19.

    PubMed  PubMed Central  Google Scholar 

  14. Kwon, J., C. Arsenis, M. Suessmilch, A. McColl, J. Cavanagh, and B.J. Morris. 2022. Differential effects of toll-like receptor activation and differential mediation by MAP kinases of immune responses in microglial cells. Cellular and Molecular Neurobiology 42: 2655–2671.

    CAS  PubMed  Google Scholar 

  15. Chu, C.H., S. Wang, C.L. Li, S.H. Chen, C.F. Hu, Y.L. Chung, et al. 2016. Neurons and astroglia govern microglial endotoxin tolerance through macrophage colony-stimulating factor receptor-mediated ERK1/2 signals. Brain, Behavior, and Immunity 55: 260–272.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, X., L. Kracht, A.M. Lerario, M.L. Dubbelaar, N. Brouwer, E.M. Wesseling, et al. 2022. Epigenetic regulation of innate immune memory in microglia. Journal of Neuroinflammation 19: 111.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Q., and X. Cao. 2021. Epigenetic remodeling in innate immunity and inflammation. Annual Review of Immunology 39: 279–311.

    CAS  PubMed  Google Scholar 

  18. Kuo, H.C., K.F. Lee, S.L. Chen, S.C. Chiu, L.Y. Lee, W.P. Chen, et al. 2022. Neuron-microglia contacts govern the PGE(2) tolerance through TLR4-mediated de novo protein synthesis. Biomedicines 10.

  19. Bras, J.P., J. Bravo, J. Freitas, M.A. Barbosa, S.G. Santos, T. Summavielle, et al. 2020. TNF-alpha-induced microglia activation requires miR-342: Impact on NF-kB signaling and neurotoxicity. Cell Death & Disease 11: 415.

    CAS  Google Scholar 

  20. Riazi, K., M.A. Galic, J.B. Kuzmiski, W. Ho, K.A. Sharkey, and Q.J. Pittman. 2008. Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proceedings of the National Academy of Sciences of the United States of America 105: 17151–17156.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Qin, L., X. Wu, M.L. Block, Y. Liu, G.R. Breese, J.S. Hong, et al. 2007. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55: 453–462.

    PubMed  PubMed Central  Google Scholar 

  22. Nimmervoll, B., R. White, J.W. Yang, S. An, C. Henn, J.J. Sun, et al. 2013. LPS-induced microglial secretion of TNFalpha increases activity-dependent neuronal apoptosis in the neonatal cerebral cortex. Cerebral Cortex 23: 1742–1755.

    PubMed  Google Scholar 

  23. Takeuchi, H., S. Jin, J. Wang, G. Zhang, J. Kawanokuchi, R. Kuno, et al. 2006. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. Journal of Biological Chemistry 281: 21362–21368.

    CAS  PubMed  Google Scholar 

  24. Liu, B., L. Du, and J.S. Hong. 2000. Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. Journal of Pharmacology and Experimental Therapeutics 293: 607–617.

    CAS  PubMed  Google Scholar 

  25. Ryu, J.K., S.J. Kim, S.H. Rah, J.I. Kang, H.E. Jung, D. Lee, et al. 2017. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer. Immunity 46: 38–50.

    CAS  PubMed  Google Scholar 

  26. Kim, S.J., and H.M. Kim. 2017. Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14. BMB Reports 50: 55–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi, J., Y. Zhao, Y. Wang, W. Gao, J. Ding, P. Li, et al. 2014. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514: 187–192.

    CAS  PubMed  Google Scholar 

  28. Youn, J.H., Y.J. Oh, E.S. Kim, J.E. Choi, and J.S. Shin. 2008. High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-alpha production in human monocytes. The Journal of Immunology 180: 5067–5074.

    CAS  PubMed  Google Scholar 

  29. Jack, R.S., X. Fan, M. Bernheiden, G. Rune, M. Ehlers, A. Weber, et al. 1997. Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection. Nature 389: 742–745.

    CAS  PubMed  Google Scholar 

  30. Wurfel, M.M., B.G. Monks, R.R. Ingalls, R.L. Dedrick, R. Delude, D. Zhou, et al. 1997. Targeted deletion of the lipopolysaccharide (LPS)-binding protein gene leads to profound suppression of LPS responses ex vivo, whereas in vivo responses remain intact. Journal of Experimental Medicine 186: 2051–2056.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Esen, N., and T. Kielian. 2006. Central role for MyD88 in the responses of microglia to pathogen-associated molecular patterns. The Journal of Immunology 176: 6802–6811.

    CAS  PubMed  Google Scholar 

  32. O’Neill, L.A., D. Golenbock, and A.G. Bowie. 2013. The history of toll-like receptors - redefining innate immunity. Nature Reviews Immunology 13: 453–460.

    CAS  PubMed  Google Scholar 

  33. Lu, Y.C., W.C. Yeh, and P.S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42: 145–151.

    CAS  PubMed  Google Scholar 

  34. Cargnello, M., and P.P. Roux. 2011. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.Microbiology and Molecular Biology Reviews 75: 50–83.

  35. Kawasaki, T., and T. Kawai. 2014. Toll-like receptor signaling pathways. Frontiers in Immunology 5: 461.

    PubMed  PubMed Central  Google Scholar 

  36. Wen, A.Y., K.M. Sakamoto, and L.S. Miller. 2010. The role of the transcription factor CREB in immune function. The Journal of Immunology 185: 6413–6419.

    CAS  PubMed  Google Scholar 

  37. Yang, S.H., A. Galanis, and A.D. Sharrocks. 1999. Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Molecular and Cellular Biology 19: 4028–4038.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Han, J., J. Wu, and J. Silke. 2020. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Research 9.

  39. Maphis, N., S. Jiang, G. Xu, O.N. Kokiko-Cochran, S.M. Roy, L.J. Van Eldik, et al. 2016. Selective suppression of the alpha isoform of p38 MAPK rescues late-stage tau pathology. Alzheimer’s Research & Therapy 8: 54.

    Google Scholar 

  40. Asih, P.R., E. Prikas, K. Stefanoska, A.R.P. Tan, H.I. Ahel, and A. Ittner. 2020. Functions of p38 MAP kinases in the central nervous system. Frontiers in Molecular Neuroscience 13.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cuadrado, A., and A.R. Nebreda. 2010. Mechanisms and functions of p38 MAPK signalling. The Biochemical Journal 429: 403–417.

    CAS  PubMed  Google Scholar 

  42. Da Silva, J., B. Pierrat, J.L. Mary, and W. Lesslauer. 1997. Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes. Journal of Biological Chemistry 272: 28373–28380.

    PubMed  Google Scholar 

  43. Lee, S.H., J. Park, Y. Che, P.L. Han, and J.K. Lee. 2000. Constitutive activity and differential localization of p38alpha and p38beta MAPKs in adult mouse brain. Journal of Neuroscience Research 60: 623–631.

    CAS  PubMed  Google Scholar 

  44. Nito, C., H. Kamada, H. Endo, K. Niizuma, D.J. Myer, and P.H. Chan. 2008. Role of the p38 mitogen-activated protein kinase/cytosolic phospholipase A2 signaling pathway in blood-brain barrier disruption after focal cerebral ischemia and reperfusion. Journal of Cerebral Blood Flow and Metabolism 28: 1686–1696.

    CAS  PubMed  Google Scholar 

  45. Fitzsimmons, B.L., M. Zattoni, C.I. Svensson, J. Steinauer, X.Y. Hua, and T.L. Yaksh. 2010. Role of spinal p38alpha and beta MAPK in inflammatory hyperalgesia and spinal COX-2 expression. NeuroReport 21: 313–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lawson, S.K., E.Y. Dobrikova, M. Shveygert, and M. Gromeier. 2013. p38alpha mitogen-activated protein kinase depletion and repression of signal transduction to translation machinery by miR-124 and -128 in neurons. Molecular and Cellular Biology 33: 127–135.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Haines, J.D., D.L. Fulton, S. Richard, and G. Almazan. 2015. p38 mitogen-activated protein kinase pathway regulates genes during proliferation and differentiation in oligodendrocytes. PLoS One1 10.

    Google Scholar 

  48. Bachstetter, A.D., R.K. Rowe, M. Kaneko, D. Goulding, J. Lifshitz, and L.J. Van Eldik. 2013. The p38alpha MAPK regulates microglial responsiveness to diffuse traumatic brain injury. Journal of Neuroscience 33: 6143–6153.

    CAS  PubMed  Google Scholar 

  49. Morganti, J.M., D.S. Goulding, and L.J. Van Eldik. 2019. Deletion of p38alpha MAPK in microglia blunts trauma-induced inflammatory responses in mice. Journal of Neuroinflammation 16: 98.

    PubMed  PubMed Central  Google Scholar 

  50. He, Y., H. She, T. Zhang, H. Xu, L. Cheng, M. Yepes, et al. 2018. p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. Journal of Cell Biology 217: 315–328.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang, Q., X.F. Mao, H.Y. Wu, H. Liu, M.L. Sun, X. Wang, et al. 2017. Cynandione A attenuates neuropathic pain through p38beta MAPK-mediated spinal microglial expression of beta-endorphin. Brain, Behavior, and Immunity 62: 64–77.

    CAS  PubMed  Google Scholar 

  52. Wendeln, A.C., K. Degenhardt, L. Kaurani, M. Gertig, T. Ulas, G. Jain, et al. 2018. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556: 332–338.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We thank Professor Jau-Shyong Hong and the National Laboratory Animal Center (NLAC), NARLabs, Taiwan for supporting this work and technical support in contract breeding and testing services, respectively.

Funding

This work was supported by grants MOST 107–2320-B-006–046-MY3, MOST 110–2320-B-255–005 -MY3, and NSTC 111–2320-B-006–018 from the Taiwan Ministry of Science and Technology, and National Science and Technology Council. This study was supported by the grants CMRPF6J0081, CMRPF6J0082, CMRPF6J0083, CMRPF6M0051, ZRRPF6L0011 and ZRRPF6M0011 from Chang Gung Memorial Hospital, Chiayi, Taiwan, and Chang Gung University of Science and Technology, Chia-Yi Campus, Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

HC.K. and SC.C. prepared and analyzed the data for Figs. 14; SL.C. prepared and analyzed the data for Figs. 57; KF. L. prepared and analyzed the data for Figure S1. HC.K. and CH.C. wrote the main manuscript text. CH.C. designed the research protocol and supervised the research. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chun-Hsien Chu.

Ethics declarations

Ethics Approval

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Animal Care and Use Committee of Chang Gung University of Science and Technology.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, HC., Chen, SL., Chiu, SC. et al. Tolerized Microglia Protect Neurons Against Endotoxin-Induced TNF-α Production via an LBP-Dependent Intracellular p38 MAPK Signaling Pathway. Inflammation 46, 2011–2023 (2023). https://doi.org/10.1007/s10753-023-01858-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01858-7

KEY WORDS

Navigation