Skip to main content
Log in

Acetyl-11-Keto-Beta-Boswellic Acid Has Therapeutic Benefits for NAFLD Rat Models That Were Given a High Fructose Diet by Ameliorating Hepatic Inflammation and Lipid Metabolism

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Acetyl-11-keto-beta-boswellic acid (AKBA), a potent anti-inflammatory compound purified from Boswellia species, was investigated in a preclinical study for its potential in preventing and treating non-alcoholic fatty liver disease (NAFLD), the most common chronic inflammatory liver disorder. The study involved thirty-six male Wistar rats, equally divided into prevention and treatment groups. In the prevention group, rats were given a high fructose diet (HFrD) and treated with AKBA for 6 weeks, while in the treatment group, rats were fed HFrD for 6 weeks and then given a normal diet with AKBA for 2 weeks. At the end of the study, various parameters were analyzed including liver tissues and serum levels of insulin, leptin, adiponectin, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor beta (TGF-β), interferon gamma (INF-ϒ), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). Additionally, the expression levels of genes related to the inflammasome complex and peroxisome proliferator-activated receptor gamma (PPAR-ϒ), as well as the levels of phosphorylated and non-phosphorylated AMP-activated protein kinase alpha-1 (AMPK-α1) protein, were measured. The results showed that AKBA improved NAFLD-related serum parameters and inflammatory markers and suppressed PPAR-ϒ and inflammasome complex-related genes involved in hepatic steatosis in both groups. Additionally, AKBA prevented the reduction of the active and inactive forms of AMPK-α1 in the prevention group, which is a cellular energy regulator that helps suppress NAFLD progression. In conclusion, AKBA has a beneficial effect on preventing and avoiding the progression of NAFLD by preserving lipid metabolism, improving hepatic steatosis, and suppressing liver inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

Data are available via requests directed to the corresponding author.

References

  1. Younossi, Z.M., A.B. Koenig, D. Abdelatif, Y. Fazel, L. Henry, and M. Wymer. 2016. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64: 73–84.

    PubMed  Google Scholar 

  2. Lee, Y.A., and S.L. Friedman. 2022. Inflammatory and fibrotic mechanisms in NAFLD—Implications for new treatment strategies. Journal of Internal Medicine 291: 11–31.

    PubMed  Google Scholar 

  3. Barbieri, E., N. Santoro, G.R. and Umano. 2023. Clinical features and metabolic complications for non-alcoholic fatty liver disease (NAFLD) in youth with obesity. Frontiers in Endocrinology 14.

  4. Stefan, N., H.-U. Häring, and K. Cusi. 2019. Non-alcoholic fatty liver disease: Causes, diagnosis, cardiometabolic consequences, and treatment strategies. The lancet Diabetes & endocrinology 7: 313–324.

    Google Scholar 

  5. He, L., G.S. Babar, J.M. Redel, S.L. Young, C.E. Chagas, W.V. Moore, and Y. Yan. 2021. Fructose intake: metabolism and role in diseases. In Sugar Intake-Risks and Benefits and the Global Diabetes Epidemic: IntechOpen.

  6. Pereira, R.M., J.D. Botezelli, K.C. da Cruz Rodrigues, R.A. Mekary, D.E. Cintra, J.R. Pauli, A.S.R. Da Silva, E.R. Ropelle, and L.P. De Moura. 2017. Fructose consumption in the development of obesity and the effects of different protocols of physical exercise on the hepatic metabolism. Nutrients 9: 405.

    PubMed  PubMed Central  Google Scholar 

  7. Jegatheesan, P., and J.P. De Bandt. 2017. Fructose and NAFLD: The multifaceted aspects of fructose metabolism. Nutrients 9: 230.

    PubMed  PubMed Central  Google Scholar 

  8. Federico, A., V. Rosato, M. Masarone, P. Torre, M. Dallio, M. Romeo, and M. Persico. 2021. The role of fructose in non-alcoholic steatohepatitis: Old relationship and new insights. Nutrients 13: 1314.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, Y., H. Lin, L. Jiang, Q. Shang, L. Yin, J.D. Lin, W.-S. Wu, and L. Rui. 2020. Hepatic Slug epigenetically promotes liver lipogenesis, fatty liver disease, and type 2 diabetes. The Journal of Clinical Investigation 130: 2992–3004.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baboota, R.K., R. Spinelli, M.C. Erlandsson, B.B. Brandao, M. Lino, H. Yang, A. Mardinoglu, M.I. Bokarewa, J. Boucher, and C.R. Kahn. 2022. Chronic hyperinsulinemia promotes human hepatocyte senescence. Molecular Metabolism 64: 101558.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, A.M., E.A. Wellberg, J.L. Kopp, and J.D. Johnson. 2021. Hyperinsulinemia in obesity, inflammation, and cancer. Diabetes & metabolism journal 45: 285–311.

    Google Scholar 

  12. Jung, U.J., and M.-S. Choi. 2014. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. International journal of molecular sciences 15: 6184–6223.

    PubMed  PubMed Central  Google Scholar 

  13. Longo, M., F. Zatterale, J. Naderi, L. Parrillo, P. Formisano, G.A. Raciti, F. Beguinot, and C. Miele. 2019. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. International journal of molecular sciences 20: 2358.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Petrescu, M., S.I. Vlaicu, L. Ciumărnean, M.V. Milaciu, C. Mărginean, M. Florea, ȘC. Vesa, and M. Popa. 2022. Chronic inflammation—a link between nonalcoholic fatty liver disease (NAFLD) and dysfunctional adipose tissue. Medicina 58: 641.

    PubMed  PubMed Central  Google Scholar 

  15. Paradies, G., V. Paradies, F.M. Ruggiero, and G. Petrosillo. 2014. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World journal of gastroenterology: WJG 20: 14205.

    PubMed  PubMed Central  Google Scholar 

  16. Yu, L., W. Hong, S. Lu, Y. Li, Y. Guan, X. Weng, and Z. Feng. 2022. The NLRP3 inflammasome in non-alcoholic fatty liver disease and steatohepatitis: Therapeutic targets and treatment. Frontiers in Pharmacology 13: 682.

    Google Scholar 

  17. Knorr, J., A. Wree, F. Tacke, A.E. Feldstein. 2020. The NLRP3 inflammasome in alcoholic and nonalcoholic steatohepatitis. Presented at Seminars in liver disease.

  18. Gehrke, N., and J.M. Schattenberg. 2020. Metabolic inflammation—a role for hepatic inflammatory pathways as drivers of comorbidities in nonalcoholic fatty liver disease? Gastroenterology 158 (1929–47): e6.

    Google Scholar 

  19. Smith, B.K., K. Marcinko, E.M. Desjardins, J.S. Lally, R.J. Ford, and G.R. Steinberg. 2016. Treatment of nonalcoholic fatty liver disease: Role of AMPK. American Journal of Physiology-Endocrinology and Metabolism 311: E730–E740.

    PubMed  Google Scholar 

  20. Zhao, P., and A.R. Saltiel. 2020. From overnutrition to liver injury: AMP-activated protein kinase in nonalcoholic fatty liver diseases. Journal of Biological Chemistry 295: 12279–12289.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fang, C., J. Pan, N. Qu, Y. Lei, J. Han, J. Zhang, D. Han. 2022. The AMPK pathway in fatty liver disease. Frontiers in Physiology 13.

  22. Liss, K.H., and B.N. Finck. 2017. PPARs and nonalcoholic fatty liver disease. Biochimie 136: 65–74.

    CAS  PubMed  Google Scholar 

  23. Ducheix, S., A. Montagner, V. Theodorou, L. Ferrier, and H. Guillou. 2013. The liver X receptor: A master regulator of the gut–liver axis and a target for non alcoholic fatty liver disease. Biochemical pharmacology 86: 96–105.

    CAS  PubMed  Google Scholar 

  24. Fleischman, M.W., M. Budoff, I. Zeb, D. Li, and T. Foster. 2014. NAFLD prevalence differs among hispanic subgroups: The Multi-Ethnic Study of Atherosclerosis. World journal of gastroenterology: WJG 20: 4987.

    PubMed  PubMed Central  Google Scholar 

  25. Xu, Y., W. Guo, C. Zhang, F. Chen, H.Y. Tan, S. Li, N. Wang, and Y. Feng. 2020. Herbal medicine in the treatment of non-alcoholic fatty liver diseases-efficacy, action mechanism, and clinical application. Frontiers in Pharmacology 11: 601.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tian, Y., J. Ma, W. Wang, L. Zhang, J. Xu, K. Wang, and D. Li. 2016. Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver. Molecular and cellular biochemistry 422: 75–84.

    CAS  PubMed  Google Scholar 

  27. Jiang, J., L. Yan, Z. Shi, L. Wang, L. Shan, and T. Efferth. 2019. Hepatoprotective and anti-inflammatory effects of total flavonoids of Qu Zhi Ke (peel of Citrus changshan-huyou) on non-alcoholic fatty liver disease in rats via modulation of NF-κB and MAPKs. Phytomedicine 64: 153082.

    CAS  PubMed  Google Scholar 

  28. Roy, N.K., D. Parama, K. Banik, D. Bordoloi, A.K. Devi, K.K. Thakur, G. Padmavathi, M. Shakibaei, L. Fan, and G. Sethi. 2019. An update on pharmacological potential of boswellic acids against chronic diseases. International journal of molecular sciences 20: 4101.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharma, T., and S. Jana. 2020. Boswellic acids as natural anticancer medicine: Precious gift to humankind. Journal of Herbal Medicine 20: 100313.

    Google Scholar 

  30. Siddiqui, A., Z. Shah, R.N. Jahan, I. Othman, and Y. Kumari. 2021. Mechanistic role of boswellic acids in Alzheimer’s disease: Emphasis on anti-inflammatory properties. Biomedicine & Pharmacotherapy 144: 112250.

    CAS  Google Scholar 

  31. Kawasaki, T., K. Igarashi, T. Koeda, K. Sugimoto, K. Nakagawa, S. Hayashi, R. Yamaji, H. Inui, T. Fukusato, and T. Yamanouchi. 2009. Rats fed fructose-enriched diets have characteristics of nonalcoholic hepatic steatosis. The Journal of nutrition 139: 2067–2071.

    CAS  PubMed  Google Scholar 

  32. Upadhayay, S., S. Mehan, A. Prajapati, P. Sethi, M. Suri, A. Zawawi, M.N. Almashjary, and S. Tabrez. 2022. Nrf2/HO-1 signaling stimulation through acetyl-11-keto-beta-boswellic acid (AKBA) provides neuroprotection in ethidium bromide-induced experimental model of multiple sclerosis. Genes 13: 1324.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, W., J. Liu, W. Fu, X. Zheng, L. Ren, S. Liu, J. Wang, T. Ji, and G. Du. 2018. 3-O-acetyl-11-keto-β-boswellic acid exerts anti-tumor effects in glioblastoma by arresting cell cycle at G2/M phase. Journal of Experimental & Clinical Cancer Research 37: 1–15.

    CAS  Google Scholar 

  34. Meratan, A.A., and M. Nemat-Gorgani. 2012. Mitochondrial membrane permeabilization upon interaction with lysozyme fibrillation products: role of mitochondrial heterogeneity. Biochimica et Biophysica Acta (BBA)-Biomembranes 1818: 2149–57.

  35. Sottacasa, G., B. Kuylenstierna, L. Ernster, and A. Bergstrand. 1967. Separation and some enzymatic properties of the inner and outer membrane of rat liver mitochondria. Methods in Enzymology 10: 457.

    Google Scholar 

  36. Müller-Kraft, G., and W. Babel. 1990. [53] Citrate synthases from methylotrophs. Methods in enzymology 188: 350–354.

    Google Scholar 

  37. Xu, J., J. Shen, R. Yuan, B. Jia, Y. Zhang, S. Wang, Y. Zhang, M. Liu, T. Wang. 2021. Mitochondrial targeting therapeutics: promising role of natural products in non-alcoholic fatty liver disease. Frontiers in Pharmacology 12.

  38. Minj, E., S. Upadhayay, and S. Mehan. 2021. Nrf2/HO-1 signaling activator acetyl-11-keto-beta boswellic acid (AKBA)-mediated neuroprotection in methyl mercury-induced experimental model of ALS. Neurochemical research 46: 2867–2884.

    CAS  PubMed  Google Scholar 

  39. Marefati, N., F. Beheshti, S. Memarpour, R. Bayat, M.N. Shafei, H.R. Sadeghnia, H. Ghazavi, and M. Hosseini. 2020. The effects of acetyl-11-keto-β-boswellic acid on brain cytokines and memory impairment induced by lipopolysaccharide in rats. Cytokine 131: 155107.

    CAS  PubMed  Google Scholar 

  40. Ahmed, M.A., A.A. Ahmed, and E.M. El Morsy. 2020. Acetyl-11-keto-β-boswellic acid prevents testicular torsion/detorsion injury in rats by modulating 5-LOX/LTB4 and p38-MAPK/JNK/Bax/Caspase-3 pathways. Life Sciences 260: 118472.

    CAS  PubMed  Google Scholar 

  41. Moussaieff, A., and R. Mechoulam. 2009. Boswellia resin: From religious ceremonies to medical uses; a review of in-vitro, in-vivo and clinical trials. Journal of Pharmacy and Pharmacology 61: 1281–1293.

  42. Bini Araba, A., N. Ur Rehman, A. Al-Araimi, S. Al-Hashmi, S. Al-Shidhani, R. Csuk, H. Hussain, A. Al-Harrasi, and F. Zadjali. 2021. New derivatives of 11-keto-β-boswellic acid (KBA) induce apoptosis in breast and prostate cancers cells. Natural Product Research 35: 707–716.

    PubMed  Google Scholar 

  43. Taherzadeh, D., V. Baradaran Rahimi, H. Amiri, S. Ehtiati, R. Yahyazadeh, S.I. Hashemy, and V.R. Askari. 2022. Acetyl-11-Keto-β-Boswellic acid (AKBA) prevents lipopolysaccharide-induced inflammation and cytotoxicity on H9C2 cells. Evidence-based Complementary and Alternative Medicine 2022.

  44. Nassir, F., and J.A. Ibdah. 2014. Role of mitochondria in nonalcoholic fatty liver disease. International journal of molecular sciences 15: 8713–8742.

    PubMed  PubMed Central  Google Scholar 

  45. Monzio Compagnoni, G., A. Di Fonzo, S. Corti, G.P. Comi, N. Bresolin, and E. Masliah. 2020. The role of mitochondria in neurodegenerative diseases: The lesson from Alzheimer’s disease and Parkinson’s disease. Molecular neurobiology 57: 2959–2980.

    CAS  PubMed  Google Scholar 

  46. Kang, W., M. Suzuki, T. Saito, and K. Miyado. 2021. Emerging role of TCA cycle-related enzymes in human diseases. International Journal of Molecular Sciences 22: 13057.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Santamarina, A.B., M. Carvalho-Silva, L.M. Gomes, M.H. Okuda, A.A. Santana, E.L. Streck, M. Seelaender, C.M.O. do Nascimento, E.B. Ribeiro, and F.S. Lira. 2015. Decaffeinated green tea extract rich in epigallocatechin-3-gallate prevents fatty liver disease by increased activities of mitochondrial respiratory chain complexes in diet-induced obesity mice. The Journal of Nutritional Biochemistry 26: 1348–1356.

    CAS  PubMed  Google Scholar 

  48. Ferramosca, A., A. Conte, and V. Zara. 2015. Krill oil ameliorates mitochondrial dysfunctions in rats treated with high-fat diet. BioMed Research International 2015.

  49. Ma, Y., M. Gao, and D. Liu. 2016. Alternating diet as a preventive and therapeutic intervention for high fat diet-induced metabolic disorder. Scientific reports 6: 1–14.

    CAS  Google Scholar 

  50. Skat-Rørdam, J., D. Højland Ipsen, J. Lykkesfeldt, and P. Tveden-Nyborg. 2019. A role of peroxisome proliferator-activated receptor γ in non-alcoholic fatty liver disease. Basic & clinical pharmacology & toxicology 124: 528–537.

    Google Scholar 

  51. Zhang, Y.-L., A. Hernandez-Ono, P. Siri, S. Weisberg, D. Conlon, M.J. Graham, R.M. Crooke, L.-S. Huang, and H.N. Ginsberg. 2006. Aberrant hepatic expression of PPARγ2 stimulates hepatic lipogenesis in a mouse model of obesity, insulin resistance, dyslipidemia, and hepatic steatosis. Journal of Biological Chemistry 281: 37603–37615.

    CAS  PubMed  Google Scholar 

  52. Awad, A.S., E.N. Abd Al Haleem, W.M. El-Bakly, and M.A. Sherief. 2016. Thymoquinone alleviates nonalcoholic fatty liver disease in rats via suppression of oxidative stress, inflammation, apoptosis. Naunyn-Schmiedeberg’s archives of pharmacology 389: 381–391.

    CAS  PubMed  Google Scholar 

  53. Chyau, C.-C., H.-F. Wang, W.-J. Zhang, C.-C. Chen, S.-H. Huang, C.-C. Chang, and R.Y. Peng. 2020. Antrodan alleviates high-fat and high-fructose diet-induced fatty liver disease in C57BL/6 mice model via AMPK/Sirt1/SREBP-1c/PPARγ pathway. International Journal of Molecular Sciences 21: 360.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao, H., T. Guan, C. Li, G. Zuo, J. Yamahara, J. Wang, and Y. Li. 2012. Treatment with ginger ameliorates fructose-induced Fatty liver and hypertriglyceridemia in rats: modulation of the hepatic carbohydrate response element-binding protein-mediated pathway. Evidence-Based Complementary and Alternative Medicine 2012.

  55. Li, X., Z. Xu, S. Wang, H. Guo, S. Dong, T. Wang, L. Zhang, and Z. Jiang. 2016. Emodin ameliorates hepatic steatosis through endoplasmic reticulum–stress sterol regulatory element-binding protein 1c pathway in liquid fructose-feeding rats. Hepatology Research 46: E105–E117.

    CAS  PubMed  Google Scholar 

  56. Trepiana, J., I. Milton-Laskibar, S. Gómez-Zorita, I. Eseberri, M. González, A. Fernández-Quintela, and M.P. Portillo. 2018. Involvement of 5′ AMP-activated protein kinase (AMPK) in the effects of resveratrol on liver steatosis. International journal of molecular sciences 19: 3473.

    PubMed  PubMed Central  Google Scholar 

  57. Boudaba, N., A. Marion, C. Huet, R. Pierre, B. Viollet, and M. Foretz. 2018. AMPK re-activation suppresses hepatic steatosis but its downregulation does not promote fatty liver development. eBioMedicine 28: 194–209.

    PubMed  PubMed Central  Google Scholar 

  58. Shen, T., B. Xu, T. Lei, L. Chen, C. Zhang, and Z. Ni. 2018. Sitagliptin reduces insulin resistance and improves rat liver steatosis via the SIRT1/AMPKα pathway. Experimental and therapeutic medicine 16: 3121–3128.

    PubMed  PubMed Central  Google Scholar 

  59. ALTamimi JZ, Alshammari GM, AlFaris NA, Alagal RI, Aljabryn DH, Albekairi NA, Alkhateeb MA, and Yahya MA. 2022. Ellagic acid protects against non-alcoholic fatty liver disease in streptozotocin-diabetic rats by activating AMPK. Pharmaceutical Biology 60: 25–37.

  60. Shiwa, M., M. Yoneda, H. Okubo, H. Ohno, K. Kobuke, Y. Monzen, R. Kishimoto, Y. Nakatsu, T. Asano, and N. Kohno. 2015. Distinct time course of the decrease in hepatic AMP-activated protein kinase and Akt phosphorylation in mice fed a high fat diet. PLoS ONE 10: e0135554.

    PubMed  PubMed Central  Google Scholar 

  61. Guo, H., J.B. Callaway, and J.P. Ting. 2015. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nature medicine 21: 677–687.

    PubMed  PubMed Central  Google Scholar 

  62. Gong, Y., X. Jiang, S. Yang, Y. Huang, J. Hong, Y. Ma, X. Fang, Y. Fang, and J. Wu. 2022. The biological activity of 3-O-acetyl-11-keto-β-boswellic acid in nervous system diseases. NeuroMolecular Medicine 1–11.

  63. Majeed, M., K. Nagabhushanam, L. Lawrence, R. Nallathambi, V. Thiyagarajan, and L. Mundkur. 2021. Boswellia serrata extract containing 30% 3-acetyl-11-keto-boswellic acid attenuates inflammatory mediators and preserves extracellular matrix in collagen-induced arthritis. Frontiers in Physiology 1578.

  64. Suther, C., L. Devon, L. Daddi, A. Matson, H. Panier, H. Yuan, K. Saar, S. Bokoliya, Y. Dorsett, and D.A. Sela. 2022. Dietary Indian frankincense (Boswellia serrata) ameliorates murine allergic asthma through modulation of the gut microbiome. Journal of Functional Foods 97: 105249.

    CAS  Google Scholar 

Download references

Funding

This work was supported by Shahid Beheshti University of Medical Sciences, grant number 17283.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Reza Ataei Kachouei and Ali Jahanbazi Jahan-Abad participated in the preparation of non-alcoholic fatty liver disease rat models. Material preparation was done by Farzaneh Salmani and Somayeh Mahmoodi Baram. Data collection and analysis were performed by Reza Ataei Kachouei, Alireza Doagoo, Maral Jalilzadeh, Seyyed Hossein Khatami, Roya Pakrad, Mohammad-Amin Abdollahifar, Hojjat Allah Abbaszadeh, Meisam Mahdavi, and Mitra Rezaei. The first draft of the manuscript was written by Reza Ataei Kachouei with support from Saeed Karima and Shima Rajaei. Mitra Nourbakhsh, Mohammad Reza Shahmohammadi, and Shokoofeh Noori commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saeed Karima.

Ethics declarations

Ethics Approval

All experiments were approved by the ethics committee at Shahid Beheshti University of medical sciences (Unique identifier: IR.SBMU.MCP.REC.1397.738) and were conducted in accordance with the Animal Care Committee guidelines of Shahid Beheshti University of medical sciences.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachouei, R.A., Doagoo, A., Jalilzadeh, M. et al. Acetyl-11-Keto-Beta-Boswellic Acid Has Therapeutic Benefits for NAFLD Rat Models That Were Given a High Fructose Diet by Ameliorating Hepatic Inflammation and Lipid Metabolism. Inflammation 46, 1966–1980 (2023). https://doi.org/10.1007/s10753-023-01853-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01853-y

KEY WORDS

Navigation