Skip to main content

Advertisement

Log in

Deletion of Cyclic GMP-AMP Synthase Aggravates Concanavalin A-Induced Acute Hepatic Injury by Facilitating Leukocyte Chemotaxis

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Growing evidence demonstrates that cyclic GMP-AMP synthase (cGAS), as a cytosolic DNA sensor, is essential for activating innate immunity and regulating inflammatory response against cellular damage. However, its role in immune-mediated hepatitis remains unclear. Here by challenging the cGAS knockout (KO) and their littermate wide-type (WT) mice with intravenous ConA injection to induce acute immune-mediated liver injury, we found that lack of cGAS drastically aggravated liver damage post ConA treatment for 24 h, reflected by increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and amplified hepatic necrosis. The number of apoptotic hepatocytes was also significantly increased in the KO mice. RNA-sequencing analysis revealed that leukocyte chemotaxis and migration-related genes were remarkably upregulated in the KO livers. Consistently, immunofluorescence assays illustrated that the infiltrating F4/80-positive macrophages, Ly6G-positive neutrophils, and CD3-positive T cells were all significantly increased in the KO liver sections. The hepatic expression of the pro-inflammatory genes was elevated as well. Supporting the in vivo findings, the knockdown of cGAS in cultured macrophages showed promoted migration potential and enhanced pro-inflammatory gene expression. These results collectively demonstrated that deletion of cGAS could aggravate ConA-induced acute liver injury, at least at the 24-h time point, and its mechanism might be related to facilitating leukocyte chemotaxis and promoting liver inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

DATA AVAILABILITY

The data sets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

MATERIALS AVAILABILITY

The data sets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Jenne, C.N., and P. Kubes. 2013. Immune surveillance by the liver. Nature Immunology 14 (10): 996–1006. https://doi.org/10.1038/ni.2691.

    Article  CAS  PubMed  Google Scholar 

  2. Eksteen, B., S.C. Afford, S.J. Wigmore, A.P. Holt, and D.H. Adams. 2007. Immune-mediated liver injury. Seminars in Liver Disease 27 (4): 351–366. https://doi.org/10.1055/s-2007-991512.

    Article  CAS  PubMed  Google Scholar 

  3. Khan, H.A., M.Z. Ahmad, J.A. Khan, and M.I. Arshad. 2017. Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance. Hepatobiliary & Pancreatic Diseases International 16 (3): 245–256. https://doi.org/10.1016/s1499-3872(17)60014-6.

    Article  Google Scholar 

  4. Sun, L., J. Wu, F. Du, X. Chen, and Z.J. Chen. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339 (6121): 786–791. https://doi.org/10.1126/science.1232458.

    Article  CAS  PubMed  Google Scholar 

  5. Li, X.D., J. Wu, D. Gao, H. Wang, L. Sun, and Z.J. Chen. 2013. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341 (6152): 1390–1394. https://doi.org/10.1126/science.1244040.

    Article  CAS  PubMed  Google Scholar 

  6. Ablasser, A. and Z.J. Chen. 2019. cGAS in action: expanding roles in immunity and inflammation. Science. 363(6431). https://doi.org/10.1126/science.aat8657.

  7. Ke, X., T. Hu, and M. Jiang. 2022. cGAS-STING signaling pathway in gastrointestinal inflammatory disease and cancers. FASEB Journal 36(1): e22029. https://doi.org/10.1096/fj.202101199R.

  8. Liao, W., C. Du, and J. Wang. 2020. The cGAS-STING pathway in hematopoiesis and its physiopathological significance. Frontiers in Immunology 11: 573915. https://doi.org/10.3389/fimmu.2020.573915.

  9. Wang, H., S. Hu, X. Chen, H. Shi, C. Chen, L. Sun, et al. 2017. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proceedings of the National Academy of Sciences of the United States of America. 114 (7): 1637–1642. https://doi.org/10.1073/pnas.1621363114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, D., Y. Tian, Q. Xia, and B. Ke. 2021. The cGAS-STING pathway: novel perspectives in liver diseases. Frontiers in Immunology 12: 682736. https://doi.org/10.3389/fimmu.2021.682736.

  11. Tiegs, G., J. Hentschel, and A. Wendel. 1992. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. Journal of Clinical Investigation 90 (1): 196–203. https://doi.org/10.1172/jci115836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heymann, F., K. Hamesch, R. Weiskirchen, and F. Tacke. 2015. The concanavalin A model of acute hepatitis in mice. LabAnimal 49 (1 Suppl): 12–20. https://doi.org/10.1177/0023677215572841.

    Article  CAS  Google Scholar 

  13. Xu, C.,C. Zhang, J. Ji, C. Wang, J. Yang, B. Geng, et al. 2018. CD36 deficiency attenuates immune-mediated hepatitis in mice by modulating the proapoptotic effects of CXC chemokine ligand 10. Hepatology 67 (5): 1943–1955. https://doi.org/10.1002/hep.29716.

    Article  CAS  PubMed  Google Scholar 

  14. Sun, Z., Q. Wang, L. Sun, M. Wu, S. Li, H. Hua, et al. 2022. Acetaminophen-induced reduction of NIMA-related kinase 7 expression exacerbates acute liver injury. JHEP Reports 4(10): 100545. https://doi.org/10.1016/j.jhepr.2022.100545.

  15. Marra, F., and F. Tacke. 2014. Roles for chemokines in liver disease. Gastroenterology 147 (3): 577-594.e1. https://doi.org/10.1053/j.gastro.2014.06.043.

    Article  CAS  PubMed  Google Scholar 

  16. Marra, F. 2002. Chemokines in liver inflammation and fibrosis. Frontiers in Bioscience 7: d1899–d1914. https://doi.org/10.2741/a887.

    Article  CAS  PubMed  Google Scholar 

  17. Erhardt, A., and G. Tiegs. 2010. Tolerance induction in response to liver inflammation. Digestive Diseases 28 (1): 86–92. https://doi.org/10.1159/000282069.

    Article  CAS  PubMed  Google Scholar 

  18. Afonso, M.B., P.M. Rodrigues, M. Mateus-Pinheiro, A.L. Simão, M.M. Gaspar, A. Majdi,et al. 2021. RIPK3 acts as a lipid metabolism regulator contributing to inflammation and carcinogenesis in non-alcoholic fatty liver disease. Gut 70 (12): 2359–2372. https://doi.org/10.1136/gutjnl-2020-321767.

    Article  CAS  PubMed  Google Scholar 

  19. Islam, T. and M.B. Afonso. 2022. The role of RIPK3 in liver mitochondria bioenergetics and function. European Journal of Clinical Investigation 52(3): e13648. https://doi.org/10.1111/eci.13648.

  20. Luther, J., S. Khan, M.K. Gala, D. Kedrin, G. Sridharan, R.P. Goodman, et al. 2020. Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation. Proceedings of the National Academy of Sciences of the United States of America 117 (21): 11667–11673. https://doi.org/10.1073/pnas.1911870117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Du, S., G. Chen, B. Yuan, Y. Hu, P. Yang, Y. Chen, et al. 2021. DNA sensing and associated type 1 interferon signaling contributes to progression of radiation-induced liver injury. Cellular & Molecular Immunology 18 (7): 1718–1728. https://doi.org/10.1038/s41423-020-0395-x.

    Article  CAS  Google Scholar 

  22. Lei, Z. and M. Deng. 2018. cGAS-mediated autophagy protects the liver from ischemia-reperfusion injury independently of STING. American Journal of Physiology-Gastrointestinal and Liver Physiology 314(6): G655-g667. https://doi.org/10.1152/ajpgi.00326.2017.

  23. He, J., R. Hao, D. Liu, X. Liu, S. Wu, S. Guo, et al. 2016. Inhibition of hepatitis B virus replication by activation of the cGAS-STING pathway. Journal of General Virology 97 (12): 3368–3378. https://doi.org/10.1099/jgv.0.000647.

    Article  CAS  PubMed  Google Scholar 

  24. Lauterbach-Rivière, L., M. Bergez, S. Mönch, B. Qu, M. Riess, F.W.R. Vondran, et al. 2020. Hepatitis B virus DNA is a substrate for the cGAS/STING pathway but is not sensed in infected hepatocytes. Viruses 12(6). https://doi.org/10.3390/v12060592.

  25. Yi, G., Y. Wen, C. Shu, Q. Han, K.V. Konan, P. Li, et al. 2016. Hepatitis C virus NS4B can suppress STING accumulation to evade innate immune responses. Journal of Virology 90 (1): 254–265. https://doi.org/10.1128/jvi.01720-15.

    Article  CAS  PubMed  Google Scholar 

  26. Ding, Q., X. Cao, J. Lu, B. Huang, Y.J. Liu, N. Kato, et al. 2013. Hepatitis C virus NS4B blocks the interaction of STING and TBK1 to evade host innate immunity. Journal of Hepatology 59 (1): 52–58. https://doi.org/10.1016/j.jhep.2013.03.019.

    Article  CAS  PubMed  Google Scholar 

  27. Jiang, M., P. Chen, L. Wang, W. Li, B. Chen, Y. Liu, et al. 2020. cGAS-STING, an important pathway in cancer immunotherapy. Journal of Hematology & Oncology 13 (1): 81. https://doi.org/10.1186/s13045-020-00916-z.

    Article  CAS  Google Scholar 

  28. Shi, X., Y. Yang, W. Zhang, J. Wang, D. Xiao, H. Ren, et al. 2022. FLASH X-ray spares intestinal crypts from pyroptosis initiated by cGAS-STING activation upon radioimmunotherapy. Proceedings of the National Academy of Sciences of the United States of America 119(43): e2208506119. https://doi.org/10.1073/pnas.2208506119.

  29. McGill, M.R., C.D. Williams, Y. Xie, A. Ramachandran, and H. Jaeschke. 2012. Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicology and Applied Pharmacology 264 (3): 387–394. https://doi.org/10.1016/j.taap.2012.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karlmark, K.R., R. Weiskirchen, H.W. Zimmermann, N. Gassler, F. Ginhoux, C. Weber, et al. 2009. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50 (1): 261–274. https://doi.org/10.1002/hep.22950.

    Article  CAS  PubMed  Google Scholar 

  31. Jaeckel, E., M. Hardtke-Wolenski, and K. Fischer. 2011. The benefit of animal models for autoimmune hepatitis. Best Practice & Research Clinical Gastroenterology 25 (6): 643–651. https://doi.org/10.1016/j.bpg.2011.10.006.

    Article  Google Scholar 

  32. Ishikawa, H., Z. Ma, and G.N. Barber. 2009. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461 (7265): 788–792. https://doi.org/10.1038/nature08476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barnett, K.C., J.M. Coronas-Serna, W. Zhou, M.J. Ernandes, A. Cao, P.J. Kranzusch, et al. 2019. Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA. Cell 176 (6): 1432-1446.e11. https://doi.org/10.1016/j.cell.2019.01.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hopfner, K.P., and V. Hornung. 2020. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nature Reviews Molecular Cell Biology 21 (9): 501–521. https://doi.org/10.1038/s41580-020-0244-x.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, H., X. Xue, and S. Panda. 2019. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO Journal 38(21): e102718. https://doi.org/10.15252/embj.2019102718.

  36. Gentili, M., X. Lahaye, F. Nadalin, G.P.F. Nader, E. Puig Lombardi, S. Herve, et al. 2019. The N-terminal domain of cGAS determines preferential association with centromeric DNA and innate immune activation in the nucleus. Cell Reports 26 (9): 2377-2393.e13. https://doi.org/10.1016/j.celrep.2019.01.105.

    Article  CAS  PubMed  Google Scholar 

  37. Volkman, H.E., S. Cambier, E.E. Gray, and D.B. Stetson. 2019. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. Elife 8. https://doi.org/10.7554/eLife.47491.

  38. Sun, H., Y. Huang, S. Mei, F. Xu, X. Liu, F. Zhao, et al. 2021. A nuclear export signal is required for cGAS to sense cytosolic DNA. Cell Reports 34(1): 108586. https://doi.org/10.1016/j.celrep.2020.108586.

  39. Liu, H., H. Zhang, X. Wu, D. Ma, J. Wu, L. Wang, et al. 2018. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563 (7729): 131–136. https://doi.org/10.1038/s41586-018-0629-6.

    Article  CAS  PubMed  Google Scholar 

  40. Chen, H. and H. Chen. 2020. cGAS suppresses genomic instability as a decelerator of replication forks. Science Advances 6(42). https://doi.org/10.1126/sciadv.abb8941.

  41. Li, X., X. Li, C. Xie, S. Cai, M. Li, H. Jin, et al. 2022. cGAS guards against chromosome end-to-end fusions during mitosis and facilitates replicative senescence. Protein & Cell 13 (1): 47–64. https://doi.org/10.1007/s13238-021-00879-y.

    Article  CAS  Google Scholar 

  42. Thomsen, M.K., R. Nandakumar, D. Stadler, A. Malo, R.M. Valls, F. Wang, et al. 2016. Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection. Hepatology 64 (3): 746–759. https://doi.org/10.1002/hep.28685.

    Article  CAS  PubMed  Google Scholar 

  43. Iracheta-Vellve, A., J. Petrasek, B. Gyongyosi, A. Satishchandran, P. Lowe, K. Kodys, et al. 2016. Endoplasmic reticulum stress-induced hepatocellular death pathways mediate liver injury and fibrosis via stimulator of interferon genes. Journal of Biological Chemistry 291 (52): 26794–26805. https://doi.org/10.1074/jbc.M116.736991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cho, C.S., H.W. Park, A. Ho, I.A. Semple, B. Kim, I. Jang, et al. 2018. Lipotoxicity induces hepatic protein inclusions through TANK binding kinase 1-mediated p62/sequestosome 1 phosphorylation. Hepatology 68 (4): 1331–1346. https://doi.org/10.1002/hep.29742.

    Article  CAS  PubMed  Google Scholar 

  45. Burleigh, K. and J.H. Maltbaek. 2020. Human DNA-PK activates a STING-independent DNA sensing pathway. Science Immunology 5(43). https://doi.org/10.1126/sciimmunol.aba4219.

  46. Chu, T.T., and X. Tu. 2021. Tonic prime-boost of STING signalling mediates Niemann-Pick disease type C. Nature 596 (7873): 570–575. https://doi.org/10.1038/s41586-021-03762-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (32071157 and 31900142).

Author information

Authors and Affiliations

Authors

Contributions

Performing experiments: J.L., Z.L., and M.G.; writing—original draft preparation: S.J. and J.L.; writing—review and editing: G.Y. and L.C.; supervision: L.C.; funding acquisition: L.C. and S.J. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lihong Chen.

Ethics declarations

Ethics Approval

All animal experiments were conducted in accordance with the guidelines approved by the Dalian Medical University Animal Care and Use Committee.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Ji, S., Liu, Z. et al. Deletion of Cyclic GMP-AMP Synthase Aggravates Concanavalin A-Induced Acute Hepatic Injury by Facilitating Leukocyte Chemotaxis. Inflammation 46, 1118–1130 (2023). https://doi.org/10.1007/s10753-023-01798-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01798-2

KEY WORDS

Navigation