Skip to main content

Advertisement

Log in

miR-7-5p Antagomir Protects Against Inflammation-Mediated Apoptosis and Lung Injury via Targeting Raf-1 In Vitro and In Vivo

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Exacerbated inflammation and apoptosis are considered upstream events associated with acute lung injury (ALI). microRNAs are critical regulators of genes responsible for inflammation and apoptosis and are considered potential therapeutic targets for ameliorating ALI. This study was undertaken to uncover the role of miR-7-5p in LPS-induced lung injury. A LPS-induced inflammation model was established using BEAS-2B cells and C57BL/6 mice. Bioinformatics analysis and the luciferase reporter assay confirmed that Raf-1 is a target of miR-7-5p and that its expression was inversely correlated with expression of proinflammatory markers and miR-7-5p, whereas miR-7-5p inhibition in vitro led to subsequent restoration of Raf-1 expression and prevention of apoptosis. Intranasal (i.n.) administration of antagomir using the C57BL/6 mouse model further confirmed that miR-7-5p inhibition suppresses LPS-induced inflammation and apoptosis via modulating the miR-7-5p/Raf-1 axis. Our findings indicate that blocking miR-7-5p expression by antagomir protects mice from LPS-induced lung injury by suppressing inflammation and activation of mitochondria-mediated survival signalling. In conclusion, our findings demonstrate a previously unknown pathophysiological role of miR-7-5p in the progression of ALI, and targeted i.n. administration of miR-7-5p antagomir could aid in the development of potential therapeutic strategies against lung injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

AVAILABILITY OF DATA AND MATERIALS

All data generated or analyzed during this study are included in this article.

Abbreviations

COPD:

Chronic obstructive pulmonary disease

ERK:

Extracellular signal–regulated protein kinases

Bcl-2:

B-cell leukemia/lymphoma 2

Bax:

Bcl-2-associated X protein

MAPK:

Mitogen-activated protein kinase

UTR:

Untranslated region

References

  1. Luo, Q., J. Zhu, Q. Zhang, J. Xie, C. Yi, and T. Li. 2020. MicroRNA-486-5p promotes acute lung injury via inducing inflammation and apoptosis by targeting OTUD7B. Inflammation 43: 975–984.

    Article  CAS  PubMed  Google Scholar 

  2. Kosutova, P., P. Mikolka, M. Kolomaznik, S. Balentova, M. Adamkov, A. Calkovska, and D. Mokra. 2018. Reduction of lung inflammation, oxidative stress and apoptosis by the PDE4 inhibitor roflumilast in experimental model of acute lung injury. Physiological Research 67: S645–S654.

    Article  CAS  PubMed  Google Scholar 

  3. Khan, A.J., and R. Nanchal. 2007. Cotton dust lung diseases. Current Opinion in Pulmonary Medicine 13: 137–141. https://doi.org/10.1097/MCP.0b013e32802c7ceb.

    Article  CAS  PubMed  Google Scholar 

  4. Brass, D.M., J.W. Hollingsworth, M. Cinque, Z. Li, E. Potts, E. Toloza, W.M. Foster, and D.A. Schwartz. 2008. Chronic LPS inhalation causes emphysema-like changes in mouse lung that are associated with apoptosis. American Journal of Respiratory Cell and Molecular Biology 39: 584–590. https://doi.org/10.1165/rcmb.2007-0448OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen, W., X. Zhao, and S. Li. 2022. Exosomes derived from ADSCs attenuate sepsis-induced lung injury by delivery of circ-fryl and regulation of the miR-490-3p/SIRT3 Pathway. Inflammation 45: 331–342.

    Article  CAS  PubMed  Google Scholar 

  6. Luo, H., H. Liang, Y. Chen, S. Chen, Y. Xu, L. Xu, J. Liu, K. Zhou, J. Peng, and G. Guo. 2018. miR-7-5p overexpression suppresses cell proliferation and promotes apoptosis through inhibiting the ability of DNA damage repair of PARP-1 and BRCA1 in TK6 cells exposed to hydroquinone. Chemico-Biological Interactions 283: 84–90.

    Article  CAS  PubMed  Google Scholar 

  7. Liu, X., and J. Meng. 2018. Luteolin alleviates LPS-induced bronchopneumonia injury in vitro and in vivo by down-regulating microRNA-132 expression. Biomedicine & Pharmacotherapy 106: 1641–1649.

    Article  CAS  Google Scholar 

  8. Pradhan, R., S. Chatterjee, K.C. Hembram, C. Sethy, M. Mandal, and C.N. Kundu. 2021. Nano formulated resveratrol inhibits metastasis and angiogenesis by reducing inflammatory cytokines in oral cancer cells by targeting tumor associated macrophages. Journal of Nutritional Biochemistry 92: 108624.

  9. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods 25: 402–408. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  10. More, G.K., and R.T. Makola. 2020. In-vitro analysis of free radical scavenging activities and suppression of LPS-induced ROS production in macrophage cells by Solanum sisymbriifolium extracts. Scientific Reports 10: 1–9.

    Article  Google Scholar 

  11. Zhu, J.H., A.M. Gusdon, H. Cimen, B. Van Houten, E. Koc, and C.T. Chu. 2012. Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: Dual roles for ERK1/2. Cell Death & Disease 3: e312–e312. https://doi.org/10.1038/cddis.2012.46.

    Article  CAS  Google Scholar 

  12. Plank, M.W., S. Maltby, H.L. Tay, J. Stewart, F. Eyers, P.M. Hansbro, and P.S. Foster. 2015. MicroRNA expression is altered in an ovalbumin-induced asthma model and targeting miR-155 with antagomirs reveals cellular specificity. PLoS ONE 10: e0144810.

  13. Zhang, Y., J. Zhang, Y. Ren, T. Li, J. Bi, Z. Du, and R. Wu. 2021. Luteolin suppresses sepsis-induced cold-inducible RNA-binding protein production and lung injury in neonatal mice. Shock 55: 268–273. https://doi.org/10.1097/SHK.0000000000001624.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, X., X. Zhang, S. Hu, M. Zheng, J. Zhang, J. Zhao, X. Zhang, B. Yan, L. Jia, and J. Zhao. 2017. Identification of miRNA-7 by genome-wide analysis as a critical sensitizer for TRAIL-induced apoptosis in glioblastoma cells. Nucleic Acids Research 45: 5930–5944. https://doi.org/10.1093/nar/gkx317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi, Y., X. Luo, P. Li, J. Tan, X. Wang, T. Xiang, and G. Ren. 2015. miR-7-5p suppresses cell proliferation and induces apoptosis of breast cancer cells mainly by targeting REGγ. Cancer Letters 35: 827–836. https://doi.org/10.1016/j.canlet.2014.12.014.

    Article  CAS  Google Scholar 

  16. Fauconnier, J., D.C. Andersson, S.J. Zhang, J.T. Lanner, R. Wibom, A. Katz, J.D. Bruton, and H. Westerblad. 2007. Effects of palmitate on Ca2+ handling in adult control and ob/ob cardiomyocytes: Impact of mitochondrial reactive oxygen species. Diabetes 56: 1136–1142. https://doi.org/10.2337/db06-0739.

    Article  CAS  PubMed  Google Scholar 

  17. Martins, A.S., V.M. Shkryl, M.C. Nowycky, and N. Shirokova. 2008. Reactive oxygen species contribute to Ca2+ signals produced by osmotic stress in mouse skeletal muscle fibres. The Journal of Physiology 586: 197–210. https://doi.org/10.1113/jphysiol.2007.146571.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, X., X. Zhao, X. Li, S. Lv, R. Ma, Y. Qi, A. Abulikemu, H. Duan, C. Guo, and Y. Li. 2020. PM2. 5. triggered apoptosis in lung epithelial cells through the mitochondrial apoptotic way mediated by a ROS-DRP1-mitochondrial fission axis. Journal of Hazardous Materials 397: 122608.

  19. Leermakers, P.A., A. Schols, A.E.M. Kneppers, M. Kelders, C.C. de Theije, M. Lainscak, and H.R. Gosker. 2018. Molecular signalling towards mitochondrial breakdown is enhanced in skeletal muscle of patients with chronic obstructive pulmonary disease (COPD). Scientific Reports 8: 1–13. https://doi.org/10.1038/s41598-018-33471-2.

    Article  CAS  Google Scholar 

  20. Zhong, J., J. Troppmair, and U.R. Rapp. 2001. Independent control of cell survival by Raf-1 and Bcl-2 at the mitochondria. Oncogene 20: 4807–4816. https://doi.org/10.1038/sj.onc.1204614.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, H.G., U.R. Rapp, and J.C. Reed. 1996. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87: 629–638. https://doi.org/10.1016/s0092-8674(00)81383-5.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Z., Q. Nian, G. Chen, S. Cui, Y. Han, and J. Zhang. 2020. Klotho alleviates lung injury caused by paraquat via suppressing ROS/P38 MAPK-regulated inflammatory responses and apoptosis. Oxidative Medicine and Cellular Longevity 2020: 2020.

    Google Scholar 

  23. Polikepahad, S., J.M. Knight, A.O. Naghavi, T. Oplt, C.J. Creighton, C. Shaw, A.L. Benham, J. Kim, B. Soibam, R.A. Harris, et al. 2010. Proinflammatory role for let-7 microRNAS in experimental asthma. Journal of Biological Chemistry 285: 30139–30149. https://doi.org/10.1074/jbc.M110.145698.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhao, J., C. Chen, M. Guo, Y. Tao, P. Cui, Y. Zhou, N. Qin, J. Zheng, J. Zhang, and L. Xu. 2016. MicroRNA-7 deficiency ameliorates the pathologies of acute lung injury through elevating KLF4. Frontiers in Immunology 7: 389. https://doi.org/10.3389/fimmu.2016.00389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Akbas, F., E. Coskunpinar, E. Aynacı, Y. Müsteri Oltulu, and P. Yildiz. 2012. Analysis of serum micro-RNAs as potential biomarker in chronic obstructive pulmonary disease. Experimental Lung Research 38: 286–294. https://doi.org/10.3109/01902148.2012.689088.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Z., Y. Liu, L. Li, Z. Xu, B. Bi, Y. Wang, and J.Y. Li. 2014. MiR-7-5p is frequently downregulated in glioblastoma microvasculature and inhibits vascular endothelial cell proliferation by targeting RAF1. Tumor Biology 35: 10177–10184. https://doi.org/10.1007/s13277-014-2318-x.

    Article  CAS  PubMed  Google Scholar 

  27. Kuznetsov, A.V., J. Smigelskaite, C. Doblander, M. Janakiraman, M. Hermann, M. Wurm, S.F. Scheidl, R. Sucher, A. Deutschmann, and J. Troppmair. 2008. Survival signaling by C-RAF: Mitochondrial reactive oxygen species and Ca2+ are critical targets. Molecular and Cellular Biology 28: 2304–2313. https://doi.org/10.1128/MCB.00683-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alavi, A., J.D. Hood, R. Frausto, D.G. Stupack, and D.A. Cheresh. 2003. Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301: 94–96. https://doi.org/10.1126/science.1082015.

    Article  CAS  PubMed  Google Scholar 

  29. Galmiche, A., and J. Fueller. 2007. RAF kinases and mitochondria. Biochimica et Biophysica Acta - Molecular Cell Research 1773: 1256–1262. https://doi.org/10.1016/j.bbamcr.2006.10.012.

    Article  CAS  Google Scholar 

  30. Reimann, T., D. Büscher, R.A. Hipskind, S. Krautwald, M.L. Lohmann-Matthes, and M. Baccarini. 1994. Lipopolysaccharide induces activation of the Raf-1/MAP kinase pathway. A putative role for Raf-1 in the induction of the IL-1 beta and the TNF-alpha genes. Journal of Immunology. 153: 5740–5749.

    Article  CAS  Google Scholar 

  31. Troppmair, J., and U.R. Rapp. 2003. Raf and the road to cell survival: A tale of bad spells, ring bearers and detours. Biochemical Pharmacology 66: 1341–1345. https://doi.org/10.1016/s0006-2952(03)00483-0.

    Article  CAS  PubMed  Google Scholar 

  32. Yang, G., D. Wu, J. Zhu, O. Jiang, Q. Shi, J. Tian, and Y. Weng. 2013. Upregulation of miR-195 increases the sensitivity of breast cancer cells to adriamycin treatment through inhibition of Raf-1. Oncology Reports 30: 877–889. https://doi.org/10.3892/or.2013.2532.

    Article  CAS  PubMed  Google Scholar 

  33. Gao, D., X. Qi, X. Zhang, K. Fang, Z. Guo, and L. Li. 2019. hsa_circRNA_0006528 as a competing endogenous RNA promotes human breast cancer progression by sponging miR-7-5p and activating the MAPK/ERK signaling pathway. Molecular Carcinogenesis 58: 554–564. https://doi.org/10.1002/mc.22950.

    Article  CAS  PubMed  Google Scholar 

  34. Chen, J., K. Fujii, L. Zhang, T. Roberts, and H. Fu. 2001. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK–ERK independent mechanism. Proceedings of the National Academy of Sciences 98: 7783–7788. https://doi.org/10.1073/pnas.141224398.

    Article  CAS  Google Scholar 

  35. Peruzzi, F., M. Prisco, M. Dews, P. Salomoni, E. Grassilli, G. Romano, B. Calabretta, and R. Baserga. 1999. Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Molecular and Cellular Biology 19: 7203–7215. https://doi.org/10.1128/mcb.19.10.7203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Salomoni, P., M.A. Wasik, R.F. Riedel, K. Reiss, J.K. Choi, T. Skorski, and B. Calabretta. 1998. Expression of constitutively active Raf-1 in the mitochondria restores antiapoptotic and leukemogenic potential of a transformation-deficient BCR/ABL mutant. Journal of Experimental Medicine 187: 1995–2007. https://doi.org/10.1084/jem.187.12.1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patel, V.J, S. Biswas Roy, H.J. Mehta, M. Joo, and R.T. Sadikot. 2018. Alternative and natural therapies for acute lung injury and acute respiratory distress syndrome. BioMed Research International 2476824. https://doi.org/10.1155/2018/2476824.

  38. Chen, Y., L. Qu, Y. Li, C. Chen, W. He, L. Shen, and R. Zhang. 2022. Glycyrrhizic acid alleviates lipopolysaccharide (LPS)-induced acute lung injury by regulating angiotensin-converting enzyme-2 (ACE2) and caveolin-1 signaling pathway. Inflammation 45: 253–266. https://doi.org/10.1007/s10753-021-01542-8.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

D.P. acknowledges the Department of Science and Technology (DST-India) for the WOS-A grant. D.P. is grateful to Dr. Rajesh Thimmaluappa, JSS Medical College, Mysuru, for providing BEAS-2B cells.

Funding

This work was supported by grants from the Department of Science and Technology (DST-India) (No. SR/ WOS-A/LS-50/2018).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, investigation and funding acquisition, methodology, writing original draft—D.P. Data curation, formal analysis and software—B.P. Validation, visualization, writing—review and editing—G.K. and R.J. Project administration, resources, supervision—V.B. and P.G.

Corresponding author

Correspondence to Vallikannan Baskaran.

Ethics declarations

Ethics Approval

Ethics approval and all experiments were performed in accordance with the guidelines provided by Institute Animal Ethical Committee of CSIR–Central Food Technological Research Institute, Mysore, India (Approval No. CFT/IAEC/204/2020).

Consent for Publication

We guarantee the work described in the manuscript has not been published before or submitted for publication elsewhere.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 354 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peethambaran, D., Puthusseri, B., Kumar, G. et al. miR-7-5p Antagomir Protects Against Inflammation-Mediated Apoptosis and Lung Injury via Targeting Raf-1 In Vitro and In Vivo. Inflammation 46, 941–962 (2023). https://doi.org/10.1007/s10753-023-01782-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01782-w

KEY WORDS

Navigation