Skip to main content

Advertisement

Log in

S100A6 Activates Kupffer Cells via the p-P38 and p-JNK Pathways to Induce Inflammation, Mononuclear/macrophage Infiltration Sterile Liver Injury in Mice

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

A Correction to this article was published on 09 January 2023

This article has been updated

Abstract

Noninfectious liver injury, including the effects of chemical material, drugs and diet, is a major cause of liver diseases worldwide. In chemical and drugs-induced liver injury, innate inflammatory responses are mediated by extracellular danger signals. The S100 protein can act as danger signals, which can promote the migration and chemotaxis of immune cells, promote the release of various inflammatory cytokines, and regulate the body’s inflammatory and immune responses. However, the role of S100A6 in inflammatory response in chemical and drugs-induced sterile liver injury remains unclear. We constructed the model of sterile liver injury induced by carbon tetrachloride (CCl4)/Paracetamol (APAP) and performed RNA sequencing (RNA-seq) on the liver tissues after injury (days 2 and 5). We analyzed inflammatory protein secretion in the liver tissue supernatant by enzyme-linked immunosorbent assay (ELISA), determined the inflammation response by bioinformatic analysis during sterile liver injury, and assessed mononuclear/macrophage infiltration by immunohistochemistry and flow cytometry. Immunohistochemistry was used to analyze the location of S100A6. We conducted inflammatory factor expression analysis and molecular mechanistic studies in Kupffer cells (KCs) induced by S100A6 using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), ELISA, and western blot in vitro experiments. We performed chemokine CCL2 expression analysis and molecular mechanism studies using the same method. We used a Transwell assay to show the infiltration of mononuclear/macrophage. We here observed that aggravated inflammatory response was shown in CCl4 and APAP-administrated mice, as evidenced by enhanced production of inflammatory cytokines (TNF-α, IL-1β), and elevated mononuclear/macrophage infiltration and activation of immunity. The expression of S100A6 was significantly increased on day 2 after sterile liver injury, which is primarily produced by injured liver cells. Mechanistic studies established that S100A6 activates Kupffer cells (KCs) via the p-P38, p-JNK and P65 pathways to induce inflammation in vitro. Furthermore, TNF-α can stimulate liver cells via the p-P38 and p-JNK pathways to produce CCL2 and promote the infiltration of mononuclear/macrophage. In summary, we showed that S100A6 plays an important role in regulating inflammation, thus influencing sterile liver injury. Our findings provide novel evidence that S100A6 can as a danger signal that contributes to pro-inflammatory activation through p-P38 and p-JNK pathways in CCl4 and APAP-induced sterile liver injury in mice. In addition, the inflammatory factor TNF-α induces a large amount of CCL2 production in normal liver cells surrounding the injured area through a paracrine action, which is chemotactic for blood mononuclear/macrophage infiltration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

AVAILABILITY OF DATA AND MATERIALS

The dataset supporting the conclusions of this article are included within the article.

Change history

Abbreviations

ALT:

Alanine transaminase

AST:

Aspartate transaminase

CCL2:

Chemokine (C–C motif) ligand 2

ELISA:

Enzyme-linked immunosorbent assay

ERK:

Extracellular regulated protein kinases

GO:

Gene Ontology

HE:

Hematoxylin and eosin

JNK:

C-Jun N-terminal kinase

KEGG:

Kyoto Encyclopedia of Genes and Genomes

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

STAT:

Signal transducer and activator of transcription

TNF-α:

Tumoral necrosis factor-α

TLR4:

Toll-like receptors

References

  1. Rinella, M.E. 2015. Nonalcoholic fatty liver disease: A systematic review. The Journal of the American Medical Association 313: 2263–2273.

    Article  CAS  PubMed  Google Scholar 

  2. Vernon, G., A. Baranova, and Z.M. Younossi. 2011. Systematic review: The epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Alimentary Pharmacology & Therapeutics 34: 274–285.

    Article  CAS  Google Scholar 

  3. Musana, K.A., S.H. Yale, and A.S. Abdulkarim. 2004. Tests of liver injury. Clinical Medicine & Research 2: 129–131.

    Article  Google Scholar 

  4. Bernal, W., G. Auzinger, A. Dhawan, and J. Wendon. 2010. Acute liver failure. Lancet (London, England) 376: 190–201.

    Article  PubMed  Google Scholar 

  5. Yona, S., K.W. Kim, Y. Wolf, A. Mildner, D. Varol, M. Breker, D. Strauss-Ayali, S. Viukov, M. Guilliams, A. Misharin, et al. 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38: 79–91.

    Article  CAS  PubMed  Google Scholar 

  6. Lawrence, T., and G. Natoli. 2011. Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nature Reviews Immunology 11: 750–761.

    Article  CAS  PubMed  Google Scholar 

  7. Karin, M., and H. Clevers. 2016. Reparative inflammation takes charge of tissue regeneration. Nature 529: 307–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tacke, F., and H.W. Zimmermann. 2014. Macrophage heterogeneity in liver injury and fibrosis. Journal of Hepatology 60: 1090–1096.

    Article  CAS  PubMed  Google Scholar 

  9. Bao, Y.L., L. Wang, H.T. Pan, T.R. Zhang, Y.H. Chen, S.J. Xu, X.L. Mao, and S.W. Li. 2021. Animal and organoid models of liver fibrosis. Frontiers in Physiology 12: 666138.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kubes, P., and W.Z. Mehal. 2012. Sterile inflammation in the liver. Gastroenterology 143: 1158–1172.

    Article  CAS  PubMed  Google Scholar 

  11. Hoque, R., A. Farooq, and W.Z. Mehal. 2013. Sterile inflammation in the liver and pancreas. Journal of Gastroenterology and Hepatology 28 (Suppl 1): 61–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuramochi, M., T. Izawa, M. Pervin, A. Bondoc, M. Kuwamura, J. LaMarre, and J. Yamate. 2017. Attenuation of thioacetamide-induced hepatocellular injury by short-term repeated injections associated with down-regulation of metabolic enzymes and relationship with MHC class II-presenting cells. Experimental and Toxicologic Pathology : Official Journal of the Gesellschaft Fur Toxikologische Pathologie 69: 589–597.

    Article  CAS  PubMed  Google Scholar 

  13. Kaltenmeier, C., R. Wang, B. Popp, D. Geller, S. Tohme, and H.O. Yazdani. 2022. Role of immuno-inflammatory signals in liver ischemia-reperfusion injury. Cells 11: 2222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shan, Z., and C. Ju. 2020. Hepatic macrophages in liver injury. Frontiers in Immunology 11: 322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krenkel, O., J.C. Mossanen, and F. Tacke. 2014. Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surgery and Nutrition 3: 331–343.

    PubMed  PubMed Central  Google Scholar 

  16. Jaeschke, H., and A. Ramachandran. 2020. Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 138: 111240.

    Article  CAS  PubMed  Google Scholar 

  17. Cha, J.Y., D.H. Kim, and K.H. Chun. 2018. The role of hepatic macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Laboratory Animal Research 34: 133–139.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shimizu, I. 2003. Impact of oestrogens on the progression of liver disease. Liver International : Official Journal of the International Association for the Study of the Liver 23: 63–69.

    Article  CAS  PubMed  Google Scholar 

  19. Xu, J.W., J. Gong, X.M. Chang, J.Y. Luo, L. Dong, Z.M. Hao, A. Jia, and G.P. Xu. 2002. Estrogen reduces CCL4- induced liver fibrosis in rats. World Journal of Gastroenterology 8: 883–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, Y., J. Xu, D. Li, H. Ma, Y. Mu, X. Huang, and L. Li. 2020. Guavinoside B from Psidium guajava alleviates acetaminophen-induced liver injury via regulating the Nrf2 and JNK signaling pathways. Food & Function 11: 8297–8308.

    Article  CAS  Google Scholar 

  21. Khaled, S., M.N. Makled, and M.A. Nader. 2020. Tiron protects against nicotine-induced lung and liver injury through antioxidant and anti-inflammatory actions in rats in vivo. Life sciences 260: 118426.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, J., J. Li, Y. Yu, Y. Liu, H. Li, Y. Liu, J. Wang, L. Zhang, X. Lu, Z. Chen, et al. 2019. Mannan-binding lectin deficiency exacerbates sterile liver injury in mice through enhancing hepatic neutrophil recruitment. Journal of Leukocyte Biology 105: 177–186.

    Article  CAS  PubMed  Google Scholar 

  23. Tacke, F. 2017. Targeting hepatic macrophages to treat liver diseases. Journal of Hepatology 66: 1300–1312.

    Article  CAS  PubMed  Google Scholar 

  24. Kiso, K., S. Ueno, M. Fukuda, I. Ichi, K. Kobayashi, T. Sakai, K. Fukui, and S. Kojo. 2012. The role of Kupffer cells in carbon tetrachloride intoxication in mice. Biological & Pharmaceutical Bulletin 35: 980–983.

    Article  CAS  Google Scholar 

  25. Ren, X., X. Li, L. Jia, D. Chen, H. Hou, L. Rui, Y. Zhao, and Z. Chen. 2017. A small-molecule inhibitor of NF-κB-inducing kinase (NIK) protects liver from toxin-induced inflammation, oxidative stress, and injury. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 31: 711–718.

    Article  CAS  PubMed  Google Scholar 

  26. Jaeschke, H., C.D. Williams, A. Ramachandran, and M.L. Bajt. 2012. Acetaminophen hepatotoxicity and repair: The role of sterile inflammation and innate immunity. Liver International : Official Journal of the International Association for the Study of the Liver 32: 8–20.

    Article  CAS  PubMed  Google Scholar 

  27. Ge, X., E. Arriazu, F. Magdaleno, D.J. Antoine, R. Dela Cruz, N. Theise, and N. Nieto. 2018. High mobility group box-1 drives fibrosis progression signaling via the receptor for advanced glycation end products in mice. Hepatology 68: 2380–2404.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, K.J., K. Terada, S. Oyadomari, Y. Inomata, M. Mori, and T. Gotoh. 2004. Induction of molecular chaperones in carbon tetrachloride-treated rat liver: Implications in protection against liver damage. Cell Stress & Chaperones 9: 58–68.

    Article  CAS  Google Scholar 

  29. Rumpret, M., H.J. von Richthofen, M. van der Linden, G.H.A. Westerlaken, C. Talavera Ormeño, T.Y. Low, H. Ovaa, and L. Meyaard. 2021. Recognition of S100 proteins by Signal Inhibitory Receptor on Leukocytes-1 negatively regulates human neutrophils. European Journal of Immunology 51: 2210–2217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsai, M.H., C.H. Lin, K.W. Tsai, M.H. Lin, C.J. Ho, Y.T. Lu, K.P. Weng, Y. Lin, P.H. Lin, and S.C. Li. 2019. S100A6 promotes B lymphocyte penetration through the blood-brain barrier in autoimmune encephalitis. Frontiers in Genetics 10: 1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, X.F., J.X. Ma, Y.L. Wang, and X.L. Ma. 2021. Calcyclin (S100A6) Attenuates inflammatory response and mediates apoptosis of chondrocytes in osteoarthritis via the PI3K/AKT Pathway. Orthopaedic Surgery 13: 1094–1101.

    Article  PubMed  PubMed Central  Google Scholar 

  32. McDonald, B., and P. Kubes. 2016. Innate immune cell trafficking and function during sterile inflammation of the liver. Gastroenterology 151: 1087–1095.

    Article  CAS  PubMed  Google Scholar 

  33. Dragomir, A.C., R. Sun, H. Choi, J.D. Laskin, and D.L. Laskin. 2012. Role of galectin-3 in classical and alternative macrophage activation in the liver following acetaminophen intoxication. Journal of Immunology 189: 5934–5941.

    Article  CAS  Google Scholar 

  34. Deng, Z.B., Y. Liu, C. Liu, X. Xiang, J. Wang, Z. Cheng, S.V. Shah, S. Zhang, L. Zhang, X. Zhuang, et al. 2009. Immature myeloid cells induced by a high-fat diet contribute to liver inflammation. Hepatology 50: 1412–1420.

    Article  CAS  PubMed  Google Scholar 

  35. Karlmark, K.R., R. Weiskirchen, H.W. Zimmermann, N. Gassler, F. Ginhoux, C. Weber, M. Merad, T. Luedde, C. Trautwein, and F. Tacke. 2009. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50: 261–274.

    Article  CAS  PubMed  Google Scholar 

  36. Deshmane, S.L., S. Kremlev, S. Amini, and B.E. Sawaya. 2009. Monocyte chemoattractant protein-1 (MCP-1): An overview. Journal of Interferon & Cytokine Research : The Official Journal of the International Society for Interferon and Cytokine Researchfor Interferon and Cytokine Research 29: 313–326.

    Article  CAS  Google Scholar 

  37. Bianconi, V., A. Sahebkar, S.L. Atkin, and M. Pirro. 2018. The regulation and importance of monocyte chemoattractant protein-1. Current Opinion in Hematology 25: 44–51.

    Article  CAS  PubMed  Google Scholar 

  38. Fujii, T., B.C. Fuchs, S. Yamada, G.Y. Lauwers, Y. Kulu, J.M. Goodwin, M. Lanuti, and K.K. Tanabe. 2010. Mouse model of carbon tetrachloride induced liver fibrosis: Histopathological changes and expression of CD133 and epidermal growth factor. BMC Gastroenterology 10: 79.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang, J., P. Xu, P. Song, H. Wang, Y. Zhang, Q. Hu, G. Wang, S. Zhang, Q. Yu, T.R. Billiar, et al. 2016. CCL2-CCR2 signaling promotes hepatic ischemia/reperfusion injury. The Journal of Surgical Research 202: 352–362.

    Article  CAS  PubMed  Google Scholar 

  40. Su, L., N. Li, H. Tang, Z. Lou, X. Chong, C. Zhang, J. Su, and X. Dong. 2018. Kupffer cell-derived TNF-α promotes hepatocytes to produce CXCL1 and mobilize neutrophils in response to necrotic cells. Cell Death & Disease 9: 323.

    Article  Google Scholar 

  41. Kumar, P., Y. Liu, Y. Shen, J.J. Maher, F. Cingolani, and M.J. Czaja. 2022. Mouse liver injury induces hepatic macrophage FGF23 production. PLoS ONE 17: e0264743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsou, H.-K., H.-T. Chen, C.-H. Chang, W.-Y. Yang, and C.-H. Tang. 2012. Apoptosis signal-regulating kinase 1 is mediated in TNF-α-induced CCL2 expression in human synovial fibroblasts. Journal of Cellular Biochemistry 113: 3509–3519.

    Article  CAS  PubMed  Google Scholar 

  43. Mendonca, P., A. Horton, D. Bauer, S. Messeha, and K.F.A. Soliman. 2019. The inhibitory effects of butein on cell proliferation and TNF-α-induced CCL2 release in racially different triple negative breast cancer cells. PLoS ONE 14: e0215269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Langert, K.A., C.L. Von Zee, J. Stubbs, and B. Evan. 2013. Cdc42 GTPases facilitate TNF-α-mediated secretion of CCL2 from peripheral nerve microvascular endoneurial endothelial cells. Journal of the Peripheral Nervous System 18: 199–208.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We thank editage. Co., Ltd., which was used for language modifications.

Funding

This study was supported by grants from Inner Mongolia Autonomous Region Key Technology Tackle Project (2021GG0098) and Inner Mongolia Autonomous Region Cancer Biotherapy Collaborative Innovation Cultivation Center.

Author information

Authors and Affiliations

Authors

Contributions

H.T. and L.W. contributed to the conception and design of the study, acquired the majority of the data, and drafted the manuscript. K.Z. contributed to the conception and design of the study and acquired some of the data. J.S. and Y.S. contributed to the design of the study and interpretation of the data. C.W. and Y.B. contributed to the design of the study, interpretation of data, and substantively revised the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Yulong Bao or Changshan Wang.

Ethics declarations

Ethical Approval and Consent to Participate

This study was conducted in accordance with the guidelines of the Declaration of Helsinki. All animal experimental protocols applied in this study were conducted in accordance with the standards of the Ethics Committee of Inner Mongolia Medical University (YKD202001030).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The corresponding authors of this article should be Yulong Bao, yulongbao0471@163.com, and Changshan Wang, changshanwang@imu.edu.cn.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, H., Wang, L., Zhang, K. et al. S100A6 Activates Kupffer Cells via the p-P38 and p-JNK Pathways to Induce Inflammation, Mononuclear/macrophage Infiltration Sterile Liver Injury in Mice. Inflammation 46, 534–554 (2023). https://doi.org/10.1007/s10753-022-01750-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01750-w

KEY WORDS

Navigation