Skip to main content

Advertisement

Log in

MiR-15p-5p Mediates the Coordination of ICAM-1 and FAK to Promote Endothelial Cell Proliferation and Migration

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Intercellular adhesion molecule-1 (ICAM-1) in endothelial cells is critical for neutrophil adhesion and transmigration across the endothelium. Focal adhesion kinase (FAK), which controls the turnover of focal adhesion to regulate cell adhesion and migration, plays a role in the resolution of inflammation. However, the coordinated involvement of ICAM-1 and FAK during endothelial inflammation has yet to be elucidated. This study reports that, as part of an inflammatory response, ICAM-1 controls FAK expression in endothelial cells via the microRNA miR-15b-5p. Induction of lung injury by lipopolysaccharide (LPS) resulted in higher levels of FAK expression in inflammatory tissues, while in ICAM-1 knockout mice, FAK expression was reduced in the lungs. FAK expression was also reduced in endothelial cells following ICAM-1 siRNA downregulation. Furthermore, ICAM-1 inhibited miR-15b-5p expression while increasing FAK mRNA and protein expression via binding of miR-15b-5p to the 3′ untranslated region (UTR) of FAK. ICAM-1 inhibited miR-15b-5p promoter activity and hence reduced miR-15b-5p expression. FAK increased endothelial cell proliferation and migration, whereas miR-15b-5p inhibited cell proliferation and migration. These findings indicate that the inflammatory molecule ICAM-1 regulates FAK expression via miR-15b-5p levels, which in turn controls endothelial cell proliferation and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

References

  1. Lawson, C., and S. Wolf. 2009. ICAM-1 signaling in endothelial cells. Pharmacological Reports 61: 22–32.

    Article  CAS  Google Scholar 

  2. Liu, G., A.T. Place, Z. Chen, V.M. Brovkovych, S.M. Vogel, W.A. Muller, R.A. Skidgel, A.B. Malik, and R.D. Minshall. 2012. ICAM-1–activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration. Blood 120: 1942–1952.

    Article  CAS  Google Scholar 

  3. Yusuf-Makagiansar, H., M.E. Anderson, T.V. Yakovleva, J.S. Murray, and T.J. Siahaan. 2002. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Medicinal Research Reviews 22: 146–167.

    Article  CAS  Google Scholar 

  4. Bui, T.M., H.L. Wiesolek, and R. Sumagin. 2020. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukocyte Biol 108: 787–799.

    Article  CAS  Google Scholar 

  5. Owen, J.D., P.J. Ruest, D.W. Fry, and S.K. Hanks. 1999. Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Molecular and Cellular Biology 19: 4806–4818.

    Article  CAS  Google Scholar 

  6. Zhao, X., and J. Guan. 2011. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliver Rev 63: 610–615.

    Article  CAS  Google Scholar 

  7. Lim, S.S. 2013. Nuclear FAK: A new mode of gene regulation from cellular adhesions. Molecules and Cells 36: 1–6.

    Article  CAS  Google Scholar 

  8. Zhou, J., Yi, Q., and L. Tang. 2019. The roles of nuclear focal adhesion kinase (FAK) on Cancer: a focused review. J Exp Clin Canc Res 38.

  9. Petridou, N.I., P. Stylianou, and P.A. Skourides. 2013. A dominant-negative provides new insights into FAK regulation and function in early embryonic morphogenesis. Development 140: 4266–4276.

    Article  CAS  Google Scholar 

  10. Roycroft, A., A. Szabó, I. Bahm, L. Daly, G. Charras, M. Parsons, and R. Mayor. 2018. Redistribution of Adhesive Forces through Src/FAK Drives Contact Inhibition of Locomotion in Neural Crest. Developmental Cell 45: 565–579.

    Article  CAS  Google Scholar 

  11. Shen, T.L., A.Y. Park, A. Alcaraz, X. Peng, I. Jang, P. Koni, R.A. Flavell, H. Gu, and J.L. Guan. 2005. Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. Journal of Cell Biology 169: 941–952.

    Article  CAS  Google Scholar 

  12. Zhao, X., X. Peng, S. Sun, A.Y. Park, and J.L. Guan. 2010. Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development. Journal of Cell Biology 189: 955–965.

    Article  CAS  Google Scholar 

  13. Arnold, K.M., Z.M. Goeckeler, and R.B. Wysolmerski. 2013. Loss of focal adhesion kinase enhances endothelial barrier function and increases focal adhesions. Microcirculation 20: 637–649.

    Article  CAS  Google Scholar 

  14. Bikis, C., D. Moris, I. Vasileiou, E. Patsouris, and S. Theocharis. 2015. FAK/Src family of kinases: Protective or aggravating factor for ischemia reperfusion injury in nervous system? Expert Opin Ther Tar 19: 539–549.

    Article  CAS  Google Scholar 

  15. Wang, T., Jin, H., Hu, J., Li, X., Ruan, H., Xu, H., Wei, L., Dong, W., Teng, F., and J. Gu. et al. 2020. COL4A1 promotes the growth and metastasis of hepatocellular carcinoma cells by activating FAK-Src signaling. J Exp Clin Canc Res 39.

  16. Yasuda, M., Y. Tanaka, M. Tamura, K. Fujii, M. Sugaya, T. So, M. Takenoyama, and K. Yasumoto. 2001. Stimulation of beta1 integrin down-regulates ICAM-1 expression and ICAM-1-dependent adhesion of lung cancer cells through focal adhesion kinase. Cancer Research 61: 2022–2030.

    CAS  PubMed  Google Scholar 

  17. Nakayamada, S., Y. Okada, K. Saito, M. Tamura, and Y. Tanaka. 2003. β1 Integrin/Focal Adhesion Kinase-mediated Signaling Induces Intercellular Adhesion Molecule 1 and Receptor Activator of Nuclear Factor κB Ligand on Osteoblasts and Osteoclast Maturation. Journal of Biological Chemistry 278: 45368–45374.

    Article  CAS  Google Scholar 

  18. Taglia, L., D. Matusiak, K.A. Matkowskyj, and R.V. Benya. 2007. Gastrin-releasing peptide mediates its morphogenic properties in human colon cancer by upregulating intracellular adhesion protein-1 (ICAM-1) via focal adhesion kinase. Am J Physiol-Gastr L 292: G182–G190.

    CAS  Google Scholar 

  19. Lu, TX., M.E. Rothenberg. 2018. MicroRNA. J Allergy Clin Immun 141: 1202–1207.

  20. Cai, Y., X. Yu, S. Hu, and J. Yu. 2009. A Brief Review on the Mechanisms of miRNA Regulation. Genomics, Proteomics & Bioinformatics 7: 147–154.

    Article  CAS  Google Scholar 

  21. Pekarsky, Y., and C.M. Croce. 2015. Role of miR-15/16 in CLL. Cell Death and Differentiation 22: 6–11.

    Article  CAS  Google Scholar 

  22. Wang, J., S. Yao, Y. Diao, Y. Geng, Y. Bi, and G. Liu. 2020. miR-15b enhances the proliferation and migration of lung adenocarcinoma by targeting BCL2. Thorac Cancer 11: 1396–1405.

    Article  CAS  Google Scholar 

  23. Sun, L., Y. Yao, B. Liu, Z. Lin, L. Lin, M. Yang, W. Zhang, W. Chen, C. Pan, Q. Liu, et al. 2012. MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene 31: 432–445.

    Article  CAS  Google Scholar 

  24. Lovat, F., M. Fassan, P. Gasparini, L. Rizzotto, L. Cascione, M. Pizzi, C. Vicentini, V. Balatti, D. Palmieri, S. Costinean, and C.M. Croce. 2015. miR-15b/16-2 deletion promotes B-cell malignancies. Proceedings of the National Academy of Sciences 112: 11636–11641.

    Article  CAS  Google Scholar 

  25. Qi, L.Q., B. Sun, B.B. Yang, and S. Lu. 2020. MiR-15b facilitates breast cancer progression via repressing tumor suppressor PAQR3. European Review for Medical and Pharmacological Sciences 24: 740–748.

    PubMed  Google Scholar 

  26. Zhu, L., J. Zhou, J. Zhang, J. Wang, Z. Wang, M. Pan, L. Li, L. Chen, C. Li, K. Wang, et al. 2017. MiR-15b-5p Regulates Collateral Artery Formation by Targeting AKT3 (Protein Kinase B-3). Arteriosclerosis, Thrombosis, and Vascular Biology 37: 957–968.

    Article  CAS  Google Scholar 

  27. Zhu, L.P., J.P. Zhou, J.X. Zhang, J.Y. Wang, Z.Y. Wang, M. Pan, L.F. Li, C.C. Li, K.K. Wang, Y.P. Bai, and G.G. Zhang. 2017. MiR-15b-5p Regulates Collateral Artery Formation by Targeting AKT3 (Protein Kinase B-3). Arteriosclerosis, Thrombosis, and Vascular Biology 37: 957–968.

    Article  CAS  Google Scholar 

  28. Gu, W., L. Yao, L. Li, J. Zhang, A.T. Place, R.D. Minshall, and G. Liu. 2017. ICAM-1 regulates macrophage polarization by suppressing MCP-1 expression via miR-124 upregulation. Oncotarget 8: 111882–111901.

    Article  Google Scholar 

  29. Yan, M., X. Zhang, A. Chen, W. Gu, J. Liu, X. Ren, J. Zhang, X. Wu, A.T. Place, R.D. Minshall, and G. Liu. 2017. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1–VE-cadherin interaction. The FASEB Journal 31: 4759–4769.

    Article  CAS  Google Scholar 

  30. Bae, G.H., H.Y. Lee, Y.S. Jung, J.W. Shim, S.D. Kim, S.H. Baek, J.Y. Kwon, J.S. Park, and Y.S. Bae. 2012. Identification of novel peptides that stimulate human neutrophils. Experimental & Molecular Medicine 44: 130–137.

    Article  CAS  Google Scholar 

  31. Downey, D.G., S.C. Bell, and J.S. Elborn. 2009. Neutrophils in cystic fibrosis. Thorax 64: 81–88.

    Article  CAS  Google Scholar 

  32. Sumagin, R., J.C. Brazil, P. Nava, H. Nishio, A. Alam, A.C. Luissint, D.A. Weber, A.S. Neish, A. Nusrat, and C.A. Parkos. 2016. Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing. Mucosal Immunology 9: 1151–1162.

    Article  CAS  Google Scholar 

  33. Mehta, D., and A.B. Malik. 2006. Signaling mechanisms regulating endothelial permeability. Physiological Reviews 86: 279–367.

    Article  CAS  Google Scholar 

  34. Roy-Luzarraga, M., and K. Hodivala-Dilke. 2016. Molecular Pathways: Endothelial Cell FAK-A Target for Cancer Treatment. Clinical Cancer Research 22: 3718–3724.

    Article  CAS  Google Scholar 

  35. Schmidt, T.T., M. Tauseef, L. Yue, M.G. Bonini, J. Gothert, T.L. Shen, J.L. Guan, S. Predescu, R. Sadikot, and D. Mehta. 2013. Conditional deletion of FAK in mice endothelium disrupts lung vascular barrier function due to destabilization of RhoA and Rac1 activities. American Journal of Physiology. Lung Cellular and Molecular Physiology 305: L291–L300.

    Article  CAS  Google Scholar 

  36. Wu, B., G. Liu, Y. Jin, T. Yang, D. Zhang, L. Ding, F. Zhou, Y. Pan, and Y. Wei. 2020. miR-15b-5p Promotes Growth and Metastasis in Breast Cancer by Targeting HPSE2. Frontiers in Oncology 10: 108.

    Article  CAS  Google Scholar 

  37. Fleming, N.H., J. Zhong, S.I. Da, D.M.E. Vega-Saenz, B. Brady, S.W. Han, D. Hanniford, J. Wang, R.L. Shapiro, E. Hernando, and I. Osman. 2015. Serum-based miRNAs in the prediction and detection of recurrence in melanoma patients. Cancer-Am Cancer Soc 121: 51–59.

    CAS  Google Scholar 

  38. Zhu, Y., T. Yang, J. Duan, N. Mu, and T. Zhang. 2019. MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway. Aging (Albany NY) 11: 1089–1109.

    Article  CAS  Google Scholar 

  39. Niu, S., L. Xu, Y. Yuan, S. Yang, H. Ning, X. Qin, P. Xin, D. Yuan, J. Jiao, and Y. Zhao. 2020. Effect of down-regulated miR-15b-5p expression on arrhythmia and myocardial apoptosis after myocardial ischemia reperfusion injury in mice. Biochemical and Biophysical Research Communications 530: 54–59.

    Article  CAS  Google Scholar 

  40. Chava, S., C.P. Reynolds, A.S. Pathania, S. Gorantla, L.Y. Poluektova, D.W. Coulter, S.C. Gupta, M.K. Pandey, and K.B. Challagundla. 2020. miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Molecular Oncology 14: 180–196.

    Article  CAS  Google Scholar 

  41. Shelef, M.A., D.A. Bennin, N. Yasmin, T.F. Warner, T. Ludwig, H.E. Beggs, and A. Huttenlocher. 2014. Focal adhesion kinase is required for synovial fibroblast invasion, but not murine inflammatory arthritis. Arthritis Research & Therapy 16: 464.

    Article  Google Scholar 

  42. Chen, X.L., J.O. Nam, C. Jean, C. Lawson, C.T. Walsh, E. Goka, S.T. Lim, A. Tomar, I. Tancioni, S. Uryu, et al. 2012. VEGF-induced vascular permeability is mediated by FAK. Developmental Cell 22: 146–157.

    Article  CAS  Google Scholar 

  43. Wong, V.W., K.C. Rustad, S. Akaishi, M. Sorkin, J.P. Glotzbach, M. Januszyk, E.R. Nelson, K. Levi, J. Paterno, I.N. Vial, et al. 2011. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nature Medicine 18: 148–152.

    Article  Google Scholar 

Download references

Funding

This project was supported financially by the National Natural Science Foundation of China (NSFC) (Grant Nos. 82104178 (W. Gu) and 31372418 (G. Liu)), Bengbu Medical College Scientific and Technology Self-Innovation Foundation Program, Grant No. BYKC201903 (G. Liu), and the Natural Science Research Project of Anhui Educational Committee, Grant No. KJ2021A0768 (W. Gu).

Author information

Authors and Affiliations

Authors

Contributions

WG and GL developed the concept and designed the studies, contributed to the data analysis and statistical analysis, and wrote and edited the manuscript. WG, LZ, XH and BY analyzed the in vivo and ex vivo studies and performed statistical analysis. LZ, XH and XY contributed to the experimental studies and data acquisition. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Guoquan Liu.

Ethics declarations

Ethics Approval and Consent to Participate

The study was conducted in accordance with guidelines developed by the China Council on Animal Care and Protocol. The procedures for care and use of animals were approved by the Ethics Committee of Bengbu Medical College, and all applicable institutional and governmental regulations concerning the ethical use of animals were followed.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 143 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, W., Zhang, L., Zhang, X. et al. MiR-15p-5p Mediates the Coordination of ICAM-1 and FAK to Promote Endothelial Cell Proliferation and Migration. Inflammation 45, 1402–1417 (2022). https://doi.org/10.1007/s10753-022-01630-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01630-3

KEY WORDS

Navigation