Skip to main content

Advertisement

Log in

Mast Cells Modulate the Immune Response and Redox Status of the Gastrointestinal Tract in Induced Venom Pathogenesis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The pathogenesis of Androctonus autralis hector (Aah) scorpion venom involved cellular and molecular mechanisms resulting in multi-organ dysfunction. However, little is reported about the effects of venom on the gastrointestinal axis. Mast cells (MCs) are known to play a crucial role in modulating immune response of the gut. This study aims to investigate the involvement of this cell type in venom-induced gastric and intestinal disorders in a time course (3 and 24h). The obtained results revealed that Aah scorpion venom induced inflammatory cell infiltration as shown by the increase of the myeloperoxidase and eosinophil peroxidase activities. Overexpression of the c-kit receptor (CD117) severely imbalanced the redox status with depletion of antioxidant systemic accompanied by gastrointestinal tissue damage. Moreover, an increased level of lactate dehydrogenase in the serum was correlated with tissue injuries. Pharmacological inhibition of MCs targeting tyrosine kinase (TK) reduces the generation of reactive oxygen species and normalizes catalase, and gluthation S-transferase activities to their physiological levels. In addition, histopathological alterations were restored after pretreatment with c-kit receptor inhibitor associated with a considerable reduction of MC density. Interestingly, obtained results indicate that MCs might be involved in gastric modulation and intestinal inflammation through c-kit signaling following sub-cutaneous Aah venom injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Adi-Bessalem, S., D. Hammoudi-Triki, and F. Laraba-Djebari. 2015. Scorpion venom interactions with the immune system. In Scorpion Venoms, 87–107. Dordrecht: Springer Netherlands.

  2. Gueron, M., R. Ilia, and S. Sofer. 1992. The cardiovascular system after scorpion envenomation A review. Journal of Toxicology: Clinical Toxicology 30 (2): 245–258.

    CAS  Google Scholar 

  3. Hammoudi-Triki, D., et al. 2007. Toxicokinetic and toxicodynamic analyses of Androctonus australis hector venom in rats: Optimization of antivenom therapy. Toxicology and Applied Pharmacology 218 (3): 205–214.

    Article  CAS  PubMed  Google Scholar 

  4. Martin-Eauclaire, M.-F., et al. 2019. Serotherapy against voltage-gated sodium channel-targeting α-toxins from androctonus scorpion venom. Toxins 11 (2): 63.

    Article  CAS  PubMed Central  Google Scholar 

  5. Bahloul, M., et al. 2005. Gastrointestinal manifestations in severe scorpion envenomation. Gastroentérologie Clinique et Biologique 29 (10): 1001–1005.

    Article  PubMed  Google Scholar 

  6. Kvietys, P.R., and D.N. Granger. 1993. The vascular endothelium in gastrointestinal inflammation. In Immunopharmacology of the gastrointestinal system, 69–94. Amsterdam: Elsevier.

  7. Bucaretchi, F., et al. 1999. Effect of toxin-g from Tityus serrulatus scorpion venom on gastric emptying in rats. Brazilian Journal of Medical and Biological Research 32 (4): 431–434.

    Article  CAS  PubMed  Google Scholar 

  8. D’suze, G., et al. 2004. Histophatological changes and inflammatory response induced by Tityus discrepans scorpion venom in rams. Toxicon 44 (8): 851–860.

    Article  CAS  PubMed  Google Scholar 

  9. Melo, J.C., et al. 1973. Mechanism of action of purified scorpion toxin on the isolated rat intestine. Toxicon 11 (1): 81–84.

    Article  CAS  PubMed  Google Scholar 

  10. Troncon, L., et al. 2000. Inhibition of gastric emptying and intestinal transit in anesthetized rats by a Tityus serrulatus scorpion toxin. Brazilian Journal of Medical and Biological Research 33 (9): 1053–1058.

    Article  CAS  PubMed  Google Scholar 

  11. Lamraoui, A., S. Adi-Bessalem, and F. Laraba-Djebari. 2014. Modulation of tissue inflammatory response by histamine receptors in scorpion envenomation pathogenesis: Involvement of H4 receptor. Inflammation 37 (5): 1689–1704.

    Article  CAS  PubMed  Google Scholar 

  12. De Winter, B.Y., R.M. van den Wijngaard, and W.J. de Jonge. 2012. Intestinal mast cells in gut inflammation and motility disturbances. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1822(1):66–73.

  13. Conti, P., et al. 2018. Impact of mast cells in mucosal immunity of intestinal inflammation: Inhibitory effect of IL-37. European Journal of Pharmacology 818: 294–299.

    Article  CAS  PubMed  Google Scholar 

  14. Konno, K., et al. 2000. Structure and biological activities of eumenine mastoparan-AF (EMP-AF) a new mast cell degranulating peptide in the venom of the solitary wasp (Anterhynchium flavomarginatum micado). Toxicon 38 (11): 1505–1515.

    Article  CAS  PubMed  Google Scholar 

  15. Matos, I.M., et al. 1999. Effects of tachykinin NK1 or PAF receptor blockade on the lung injury induced by scorpion venom in rats. European Journal of Pharmacology 376 (3): 293–300.

    Article  CAS  PubMed  Google Scholar 

  16. Chaïr-Yousfi, I., F. Laraba-Djebari, and D. Hammoudi-Triki. 2015. Androctonus australis hector venom contributes to the interaction between neuropeptides and mast cells in pulmonary hyperresponsiveness. International Immunopharmacology 25 (1): 19–29.

    Article  PubMed  CAS  Google Scholar 

  17. MacQueen, G., et al. 1989. Conditioned secretion of rat mast cell protease II release by mucosal mast cells. Science 243: 83–85.

    Article  CAS  PubMed  Google Scholar 

  18. Dudeck, A., et al. 2019. Mast cells as protectors of health. Journal of Allergy and Clinical Immunology 144 (4): S4–S18.

    Article  CAS  Google Scholar 

  19. Becker, M., et al. 2015. Mast cells as rapid innate sensors of cytomegalovirus by TLR3/TRIF signaling-dependent and-independent mechanisms. Cellular & Molecular Immunology 12 (2): 192–201.

    Article  CAS  Google Scholar 

  20. Zoccal, K.F., et al. 2014. TLR2 TLR4 and CD14 recognize venom-associated molecular patterns from Tityus serrulatus to induce macrophage-derived inflammatory mediators. PLoS One 9(2):e88174.

  21. Rizzo, A.N., et al. 2015. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology 309 (11): L1294–L1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nascimento, N.G., et al. 2010. Contribution of mast cells to the oedema induced by Bothrops moojeni snake venom and a pharmacological assessment of the inflammatory mediators involved. Toxicon 55 (2–3): 343–352.

    Article  CAS  Google Scholar 

  23. Krawisz, J., P. Sharon, and W. Stenson. 1984. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity: Assessment of inflammation in rat and hamster models. Gastroenterology 87 (6): 1344–1350.

    Article  CAS  PubMed  Google Scholar 

  24. Nevill, M., et al. 1996. Growth hormone responses to treadmill sprinting in sprint-and endurance-trained athletes. European Journal of Applied Physiology and Occupational Physiology 72 (5–6): 460–467.

    Article  CAS  PubMed  Google Scholar 

  25. Griess, P. 1879. Bemerkungen zu der Abhandlung der HH. Weselsky und Benedikt „Ueber einige Azoverbindungen”. Berichte der deutschen chemischen Gesellschaft 12(1):426–428.

  26. Terry, J., et al. 1998. Volume recombination and opacity in Alcator C-Mod divertor plasmas. Physics of Plasmas 5 (5): 1759–1766.

    Article  CAS  Google Scholar 

  27. Pick, E., and Y. Keisari. 1980. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. Journal of Immunological Methods 38 (1–2): 161–170.

    Article  CAS  PubMed  Google Scholar 

  28. Aebi, H. 1984. [13] Catalase in vitro. Methods in Enzymology 105: 121–126.

    Article  CAS  PubMed  Google Scholar 

  29. Plunkett, M.J., and J.A. Ellman. 1995. A silicon-based linker for traceless solid-phase synthesis. The Journal of Organic Chemistry 60 (19): 6006–6007.

    Article  CAS  Google Scholar 

  30. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 (1–2): 248–254.

    Article  CAS  PubMed  Google Scholar 

  31. Petricevich, V.L. 2006. Balance between pro-and anti-inflammatory cytokines in mice treated with Centruroides noxius scorpion venom. Mediators of Inflammation 2006.

  32. Adi-Bessalem, S., D. Hammoudi-Triki, and F. Laraba-Djebari. 2008. Pathophysiological effects of Androctonus australis hector scorpion venom: Tissue damages and inflammatory response. Experimental and Toxicologic Pathology 60 (4–5): 373–380.

    Article  PubMed  Google Scholar 

  33. Daisley, H., D. Alexander, and P. Pitt-Miller. 1999. Acute myocarditis following Tityus trinitatis envenoming: Morphological and pathophysiological characteristics. Toxicon 37 (1): 159–165.

    Article  CAS  PubMed  Google Scholar 

  34. de Dàvila, C.A.M., et al. 2002. Sympathetic nervous system activation, antivenin administration and cardiovascular manifestations of scorpion envenomation. Toxicon 40 (9): 1339–1346.

    Article  PubMed  Google Scholar 

  35. Raouraoua-Boukari, R., et al. 2012. Immunomodulation of the inflammatory response induced by Androctonus australis hector neurotoxins: Biomarker interactions. NeuroImmunoModulation 19 (2): 103–110.

    Article  CAS  PubMed  Google Scholar 

  36. Bekkari, N., M.-F. Martin-Eauclaire, and F. Laraba-Djebari. 2015. Complement system and immunological mediators: Their involvements in the induced inflammatory process by Androctonus australis hector venom and its toxic components. Experimental and Toxicologic Pathology 67 (7–8): 389–397.

    Article  CAS  PubMed  Google Scholar 

  37. Rattmann, Y.D., et al. 2008. Vascular permeability and vasodilation induced by the Loxosceles intermedia venom in rats: Involvement of mast cell degranulation histamine and 5-HT receptors. Toxicon 51 (3): 363–372.

    Article  CAS  PubMed  Google Scholar 

  38. Isbister, G.K., and H.S. Bawaskar. 2014. Scorpion envenomation. New England Journal of Medicine 371 (5): 457–463.

    Article  CAS  Google Scholar 

  39. Pucca, M.B., et al. 2015. Tityus serrulatus venom–a lethal cocktail. Toxicon 108: 272–284.

    Article  CAS  PubMed  Google Scholar 

  40. Ballout, J., and M. Diener. 2019. Interactions between rat submucosal neurons and mast cells are modified by cytokines and neurotransmitters. European Journal of Pharmacology 864:172713.

  41. Sharkey, K.A., and A.B. Kroese. 2001. Consequences of intestinal inflammation on the enteric nervous system: Neuronal activation induced by inflammatory mediators. The Anatomical Record: An Official Publication of the American Association of Anatomists 262 (1): 79–90.

    Article  CAS  Google Scholar 

  42. Koon, H.W., and C. Pothoulakis. 2006. Immunomodulatory properties of substance P: The gastrointestinal system as a model. Annals of the New York Academy of Sciences 1088 (1): 23–40.

    Article  CAS  PubMed  Google Scholar 

  43. Van Nassauw, L., D. Adriaensen, and J.-P. Timmermans. 2007. The bidirectional communication between neurons and mast cells within the gastrointestinal tract. Autonomic Neuroscience 133 (1): 91–103.

    Article  PubMed  CAS  Google Scholar 

  44. Taibi-Djennah, Z., M.-F. Matin-Eauclaire, and F. Laraba-Djebari. 2015. Systemic responses following brain injuries and inflammatory process activation induced by a neurotoxin of Androctonus scorpion venom. NeuroImmunoModulation 22 (6): 347–357.

    Article  CAS  PubMed  Google Scholar 

  45. Pincus, S.H., A.-M. DiNapoli, and W.R. Schooley. 1982. Superoxide production by eosinophils: Activation by histamine. Journal of Investigative Dermatology 79 (1): 53–57.

    Article  CAS  Google Scholar 

  46. Saidoune-Malek, I., A. Ait-Lounis, and F. Laraba-Djebari. 2018. TNF-α antagonist improves oxidative stress and lipid disorders induced by scorpion venom in the intestinal tissue. Acta Tropica 185: 307–313.

    Article  CAS  PubMed  Google Scholar 

  47. Dousset, E., et al. 2005. Evidence that free radical generation occurs during scorpion envenomation. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 140 (2): 221–226.

    CAS  Google Scholar 

  48. Lima-Júnior, R.C.P., et al. 2012. Involvement of nitric oxide on the pathogenesis of irinotecan-induced intestinal mucositis: Role of cytokines on inducible nitric oxide synthase activation. Cancer Chemotherapy and Pharmacology 69 (4): 931–942.

    Article  PubMed  CAS  Google Scholar 

  49. Leitão, R.F., et al. 2011. Role of inducible nitric oxide synthase pathway on methotrexate-induced intestinal mucositis in rodents. BMC Gastroenterology 11 (1): 1–10.

    Article  CAS  Google Scholar 

  50. Little, J.W., T. Doyle, and D. Salvemini. 2012. Reactive nitroxidative species and nociceptive processing: Determining the roles for nitric oxide superoxide and peroxynitrite in pain. Amino Acids 42 (1): 75–94.

    Article  CAS  PubMed  Google Scholar 

  51. Natarajan, K., et al. 2018. NF-κB-iNOS-COX2-TNF α inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats. Food and Chemical Toxicology 118: 766–783.

    Article  CAS  PubMed  Google Scholar 

  52. Mohora, M., et al. 2007. The sources and the targets of oxidative stress in the etiology of diabetic complications. Romanian Journal of Biophysics 17 (2): 63–84.

    CAS  Google Scholar 

  53. Beckman, J.S. 1996. Oxidative damage and tyrosine nitration from peroxynitrite. Chemical Research in Toxicology 9 (5): 836–844.

    Article  CAS  PubMed  Google Scholar 

  54. Kimura, H., et al. 2005. Toxicity and roles of reactive oxygen species. Current Drug Targets-Inflammation & Allergy 4 (4): 489–495.

    Article  CAS  Google Scholar 

  55. Lardinois, O.M., M.M. Mestdagh, and P.G. Rouxhet. 1996. Reversible inhibition and irreversible inactivation of catalase in presence of hydrogen peroxide. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1295(2):222–238.

  56. Sultan, C.S., et al. 2018. Impact of carbonylation on glutathione peroxidase-1 activity in human hyperglycemic endothelial cells. Redox Biology 16: 113–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Casado‐Bedmar, M., et al. 2019. Upregulation of intestinal mucosal mast cells expressing VPAC1 in close proximity to vasoactive intestinal polypeptide in inflammatory bowel disease and murine colitis. Neurogastroenterology & Motility 31(3):e13503.

  58. Xu, X., et al. 2002. Mast cells involvement in the inflammation and fibrosis development of the TNBS-induced rat model of colitis. Scandinavian Journal of Gastroenterology 37 (3): 330–337.

    Article  PubMed  Google Scholar 

  59. Boeckxstaens, G. 2015. Mast cells and inflammatory bowel disease. Current Opinion in Pharmacology 25: 45–49.

    Article  CAS  PubMed  Google Scholar 

  60. Pennock, J.L., and R.K. Grencis. 2004. In vivo exit of c-kit+/CD49dhi/β7+ mucosal mast cell precursors from the bone marrow following infection with the intestinal nematode Trichinella spiralis. Blood 103 (7): 2655–2660.

    Article  CAS  PubMed  Google Scholar 

  61. Jamur, M.C., et al. 2010. Mast cell repopulation of the peritoneal cavity: Contribution of mast cell progenitors versus bone marrow derived committed mast cell precursors. BMC Immunology 11 (1): 1–12.

    Article  CAS  Google Scholar 

  62. Kaddache, A., et al. 2017. Switch of steady-state to an accelerated granulopoiesis in response to Androctonus australis hector venom. Inflammation 40 (3): 871–883.

    Article  CAS  PubMed  Google Scholar 

  63. de Almeida Buranello, P.A., et al. 2010. The lectin ArtinM induces recruitment of rat mast cells from the bone marrow to the peritoneal cavity. PloS One 5(3):e9776.

  64. Bischoff, S.C. 2016. Mast cells in gastrointestinal disorders. European Journal of Pharmacology 778: 139–145.

    Article  CAS  PubMed  Google Scholar 

  65. Tonini, M., et al. 2005. 5-HT7 receptors modulate peristalsis and accommodation in the guinea pig ileum. Gastroenterology 129 (5): 1557–1566.

    Article  CAS  PubMed  Google Scholar 

  66. Barbara, G., et al. 2004. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126 (3): 693–702.

    Article  PubMed  Google Scholar 

  67. Sand, E., A. Themner-Persson, and E. Ekblad. 2008. Infiltration of mast cells in rat colon is a consequence of ischemia/reperfusion. Digestive Diseases and Sciences 53 (12): 3158–3169.

    Article  CAS  PubMed  Google Scholar 

  68. Correa, M., et al. 1997. Biochemical and histopathological alterations induced in rats by Tityus serrulatus scorpion venom and its major neurotoxin tityustoxin-I. Toxicon 35 (7): 1053–1067.

    Article  CAS  PubMed  Google Scholar 

  69. Heidarpour, M., et al. 2012. Histopathological changes induced by Hemiscorpius lepturus scorpion venom in mice. Toxicon 59 (3): 373–378.

    Article  CAS  PubMed  Google Scholar 

  70. Babcock, J.L., et al. 1981. Systemic effect in mice of venom apparatus extract and toxin from the brown recluse spider (Loxosceles reclusa). Toxicon 19 (4): 463–471.

    Article  CAS  PubMed  Google Scholar 

  71. Smith, C.W., and D.W. Micks. 1968. A comparative study of the venom and other components of three species of Loxosceles. The American Journal of Tropical Medicine and Hygiene 17 (4): 651–656.

    Article  CAS  PubMed  Google Scholar 

  72. Liu, T., et al. 2007. Degranulation of mast cells and histamine release involved in rat pain-related behaviors and edema induced by scorpion Buthus martensi Karch venom. European Journal of Pharmacology 575 (1–3): 46–56.

    Article  CAS  PubMed  Google Scholar 

  73. Hofstra, C.L., et al. 2003. Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells. Journal of Pharmacology and Experimental Therapeutics 305 (3): 1212–1221.

    Article  CAS  Google Scholar 

  74. Sanchez-Miranda, E., A. Ibarra-Sanchez, and C. Gonzalez-Espinosa. 2010. Fyn kinase controls FcεRI receptor-operated calcium entry necessary for full degranulation in mast cells. Biochemical and Biophysical Research Communications 391 (4): 1714–1720.

    Article  CAS  PubMed  Google Scholar 

  75. Kim, I.K., et al. 2013. Effect of tyrosine kinase inhibitors imatinib and nilotinib in murine lipopolysaccharide-induced acute lung injury during neutropenia recovery. Critical Care 17 (3): 1–11.

    Article  Google Scholar 

  76. Akhmetshina, A., et al. 2008. Dual inhibition of c-abl and PDGF receptor signaling by dasatinib and nilotinib for the treatment of dermal fibrosis. The FASEB Journal 22 (7): 2214–2222.

    Article  CAS  PubMed  Google Scholar 

  77. Miyachi, K., et al. 2003. Efficacy of imatinib mesylate (STI571) treatment for a patient with rheumatoid arthritis developing chronic myelogenous leukemia. Clinical Rheumatology 22 (4–5): 329–332.

    Article  CAS  PubMed  Google Scholar 

  78. Oshitani, N., et al. 2006. Significance of activated mast cells in submucosa and muscularis propria of patients with Crohn’s disease detected by a novel antimast cell surface molecule antibody. Alimentary Pharmacology & Therapeutics 24: 1–7.

    Article  Google Scholar 

  79. Vaali, K., et al. 2012. Imatinib mesylate alleviates diarrhea in a mouse model of intestinal allergy. Neurogastroenterology & Motility 24 (7): e325–e335.

    Article  CAS  Google Scholar 

  80. Grencis, R., et al. 1993. The in vivo role of stem cell factor (c-kit ligand) on mastocytosis and host protective immunity to the intestinal nematode Trichinella spiralis in mice. Parasite Immunology 15 (1): 55–59.

    Article  CAS  PubMed  Google Scholar 

  81. Louza, G.S., L.L.G. do Carmo, and I.M. Conceição. 2020. Effect of Tityus serrulatus scorpion venom on isolated jejunum: A very useful tool to study the interaction between neurons in the enteric nervous system. Autonomic Neuroscience 227:102676.

  82. Bicalho, A., et al. 2002. Investigation of the modulation of glutamate release by sodium channels using neurotoxins. Neuroscience 113 (1): 115–123.

    Article  CAS  PubMed  Google Scholar 

  83. Borja-Oliveira, C., et al. 2009. Positive inotropic effects of Tityus cambridgei and T. serrulatus scorpion venoms on skeletal muscle. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 149 (3): 404–408.

    CAS  Google Scholar 

  84. Voisin, T., A. Bouvier, and I.M. Chiu. 2017. Neuro-immune interactions in allergic diseases: Nnovel targets for therapeutics. International Immunology 29 (6): 247–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ismail, M. 1995. The scorpion envenoming syndrome. Toxicon 33 (7): 825–858.

    Article  CAS  PubMed  Google Scholar 

  86. Possani, L.D., et al. 1999. Scorpion toxins specific for Na+-channels. European Journal of Biochemistry 264 (2): 287–300.

    Article  CAS  PubMed  Google Scholar 

  87. Sofer, S., and M. Gueron. 1988. Respiratory failure in children following envenomation by the scorpion Leiurus quinquestriatus: Hemodynamic and neurological aspects. Toxicon 26 (10): 931–939.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Professors Baba Ahmed Rebiha and Djenane Nassima and their teams from CHU Lamine Debaghine of Algiers for their technical supports and their generous gift of primary antibody (Mouse Monoclonal Antibody anti-CD117).

Author information

Authors and Affiliations

Authors

Contributions

NZCH, conceived and designed the research plan, conducted experiments, and wrote the manuscript. HTD, FLD, designed the research plan, supervised the work, wrote, and approved the manuscript.

Corresponding author

Correspondence to Fatima Laraba-Djebari.

Ethics declarations

Ethical Approval

All animal experiments were performed following guidelines for the care of laboratory animals and approved by the European Community Council Directive (86/609/EEC).

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Androctonus australis hector  venom-induced gastrointestinal inflammation

• Venom-induced redox status imbalance in the gastrointestinal tract

• Involvement of mast cells in inflammation and tissue damages of gastrointestinal tract

• Pharmacological inhibition targeting tyrosine kinase  receptor reduces mast cell activation and degranulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zerarka-Chabane, N., Laraba-Djebari, F. & Hammoudi-Triki, D. Mast Cells Modulate the Immune Response and Redox Status of the Gastrointestinal Tract in Induced Venom Pathogenesis. Inflammation 45, 509–527 (2022). https://doi.org/10.1007/s10753-021-01562-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01562-4

KEY WORDS

Navigation