Skip to main content

Advertisement

Log in

gC1qR Antibody Can Modulate Endothelial Cell Permeability in Angioedema

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract—

Angioedema is characterized by swelling of the skin or mucous membranes. Overproduction of the vasodilator bradykinin (BK) is an important contributor to the disease pathology, which causes rapid increase in vascular permeability. BK formation on endothelial cells results from high molecular weight kininogen (HK) interacting with gC1qR, the receptor for the globular heads of C1q, the first component of the classical pathway of complement. Endothelial cells are sensitive to blood-flow-induced shear stress and it has been shown that shear stress can modulate gC1qR expression. This study aimed to determine the following: (1) how BK or angioedema patients’ (HAE) plasma affected endothelial cell permeability and gC1qR expression under shear stress, and (2) if monoclonal antibody (mAb) 74.5.2, which recognizes the HK binding site on gC1qR, had an inhibitory effect in HK binding to endothelial cells. Human dermal microvascular endothelial cells (HDMECs) grown on Transwell inserts were exposed to shear stress in the presence of HAE patients’ plasma. Endothelial cell permeability was measured using FITC-conjugated bovine serum albumin. gC1qR expression and HK binding to endothelial cell surface was measured using solid-phase ELISA. Cell morphology was quantified using immunofluorescence microscopy. The results demonstrated that BK at 1 µg/mL, but not HAE patients’ plasma and/or shear stress, caused significant increases in HDMEC permeability. The mAb 74.5.2 could effectively inhibit HK binding to recombinant gC1qR, and reduce HAE patients’ plasma-induced HDMEC permeability change. These results suggested that monoclonal antibody to gC1qR, i.e., 74.5.2, could be potentially used as an effective therapeutic reagent to prevent angioedema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

Raw data is available upon request.

Code Availability

Not applicable.

References

  1. Kaplan, A.P. 2008. Angioedema. World Allergy Organization Journal 1: 103–113.

    Article  Google Scholar 

  2. Fields, T., B. Ghebrehiwet, and A.P. Kaplan. 1983. Kinin formation in hereditary angioedema plasma: Evidence against kinin derivation from C2 and in support of “spontaneous” formation of bradykinin. Journal of Allergy and Clinical Immunology 72: 54–60.

    Article  CAS  Google Scholar 

  3. Davis, A.E., III. 2005. The pathophysiology of hereditary angioedema. Clinical Immunology 114: 3–9.

    Article  CAS  PubMed  Google Scholar 

  4. Peerschke, E.I., S.S. Smyth, E.I. Teng, M. Dalzell, and B. Ghebrehiwet. 1996. Human umbilical vein endothelial cells possess binding sites for the globular domain of C1q. The Journal of Immunology 157: 4154–4158.

    Article  CAS  PubMed  Google Scholar 

  5. Ghebrehiwet, B., J. Jesty, and E.I. Peerschke. 2002. gC1q-R/p33: Structure-function predictions from the crystal structure. Immunobiology 205: 421–432.

    Article  CAS  PubMed  Google Scholar 

  6. Ghebrehiwet, B., and E.I. Peerschke. 2004. cC1q-R (calreticulin) and gC1q-R/p33: Ubiquitously expressed multi-ligand binding cellular proteins involved in inflammation and infection. Molecular immunology 41: 173–183.

    Article  CAS  PubMed  Google Scholar 

  7. Joseph, K., B. Ghebrehiwet, and A.P. Kaplan. 1999. Cytokeratin 1 and gC1qR mediate high molecular weight kininogen binding to endothelial cells. Clinical Immunology 92: 246–255.

    Article  CAS  PubMed  Google Scholar 

  8. Ghebrehiwet, B., C. CebadaMora, L. Tantral, J. Jesty, and E.I. Peerschke. 2006. gC1qR/p33 serves as a molecular bridge between the complement and contact activation systems and is an important catalyst in inflammation. Advances in Experimental Medicine and Biology 586: 95–105.

    Article  CAS  PubMed  Google Scholar 

  9. Kaplan, A.P., and B. Ghebrehiwet. 2010. The plasma bradykinin-forming pathways and its interrelationships with complement. Molecular Immunology 47: 2161–2169.

    Article  CAS  PubMed  Google Scholar 

  10. Liao, J.K., and C.J. Homcy. 1992. Specific receptor-guanine nucleotide binding protein interaction mediates the release of endothelium-derived relaxing factor. Circulation Research 70: 1018–1026.

    Article  CAS  PubMed  Google Scholar 

  11. Han, E.D., R.C. MacFarlane, A.N. Mulligan, J. Scafidi, and A.E. Davis 3rd. 2002. Increased vascular permeability in C1 inhibitor-deficient mice mediated by the bradykinin type 2 receptor. The Journal of Clinical Investigation 109: 1057–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sheikh, I.A., and A.P. Kaplan. 1986. Studies of the digestion of bradykinin lysyl bradykinin and kinin-degradation products by carboxypeptidases A B and N. Biochemical Pharmacology 35: 1957–1963.

    Article  CAS  PubMed  Google Scholar 

  13. Drummond, G.R., and T.M. Cocks. 1995. Endothelium-dependent relaxation to the B1 kinin receptor agonist des-Arg9-bradykinin in human coronary arteries. British Journal of Pharmacology 116: 3083–3085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gavras, H., and I. Gavras. 1988. Angiotensin converting enzyme inhibitors Properties and side effects. Hypertension 11: Ii37–41.

  15. Fuentes, A.V., M.D. Pineda, and K.C.N. Venkata. 2018. Comprehension of Top 200 prescribed drugs in the US as a resource for pharmacy teaching training and practice. Pharmacy 6: 43.

    Article  PubMed Central  Google Scholar 

  16. Saadi, S., R.A. Holzknecht, C.P. Patte, and J.L. Platt. 2000. Endothelial cell activation by pore-forming structures: Pivotal role for interleukin-1alpha. Circulation 101: 1867–1873.

    Article  CAS  PubMed  Google Scholar 

  17. Panes, J., M. Perry, and D.N. Granger. 1999. Leukocyte-endothelial cell adhesion: Avenues for therapeutic intervention. British Journal of Pharmacology 126: 537–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yin, W., B. Ghebrehiwet, B. Weksler, and E.I. Peerschke. 2007. Classical pathway complement activation on human endothelial cells. Molecular Immunology 44: 2228–2234.

    Article  CAS  PubMed  Google Scholar 

  19. Yin, W., B. Ghebrehiwet, B. Weksler, and E.I.B. Peerschke. 2008. Regulated complement deposition on the surface of human endothelial cells: Effect of tobacco smoke and shear stress. Thrombosis Research 122: 221–228.

    Article  CAS  PubMed  Google Scholar 

  20. Lu, D., and G.S. Kassab. 2011. Role of shear stress and stretch in vascular mechanobiology. Journal of the Royal Society Interface 8: 1379–1385.

    Article  CAS  PubMed Central  Google Scholar 

  21. Prematta, M.J., T. Prematta, and T.J. Craig. 2008. Treatment of hereditary angioedema with plasma-derived C1 inhibitor. Therapeutics and Clinical Risk Management 4: 975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bossi, F., F. Fischetti, D. Regoli, P. Durigutto, B. Frossi, F. Gobeil Jr., B. Ghebrehiwet, E.I. Peerschke, M. Cicardi, and F. Tedesco. 2009. Novel pathogenic mechanism and therapeutic approaches to angioedema associated with C1 inhibitor deficiency. Journal of Allergy and Clinical Immunology 124: 1303–1310.

    Article  CAS  Google Scholar 

  23. Ghebrehiwet, B., P.D. Lu, W. Zhang, B.L. Lim, P. Eggleton, L.E. Leigh, K.B. Reid, and E.I. Peerschke. 1996. Identification of functional domains on gC1Q-R a cell surface protein that binds to the globular “heads” of C1Q using monoclonal antibodies and synthetic peptides. Hybridoma 15: 333–342.

    Article  CAS  PubMed  Google Scholar 

  24. Peerschke, E.I., W. Yin, S.E. Grigg, and B. Ghebrehiwet. 2006. Blood platelets activate the classical pathway of human complement. Journal of Thrombosis and Haemostasis 4: 2035–2042.

    Article  CAS  PubMed  Google Scholar 

  25. Yin, W., S.K. Shanmugavelayudam, and D.A. Rubenstein. 2011. The effect of physiologically relevant dynamic shear stress on platelet and endothelial cell activation. Thrombosis Research 127: 235–241.

    Article  CAS  PubMed  Google Scholar 

  26. Shanmugavelayudam, S.K., D.A. Rubenstein, and W. Yin. 2011. Effects of physiologically relevant dynamic shear stress on platelet complement activation. Platelets 22: 602–610.

    Article  CAS  PubMed  Google Scholar 

  27. Meza, D., S.K. Shanmugavelayudam, A. Mendoza, C. Sanchez, D.A. Rubenstein, and W. Yin. 2017. Platelets modulate endothelial cell response to dynamic shear stress through PECAM-1. Thrombosis Research 150: 44–50.

    Article  CAS  PubMed  Google Scholar 

  28. Bossi, F., F. Fischetti, V. Pellis, R. Bulla, E. Ferrero, T.E. Mollnes, D. Regoli, and F. Tedesco. 2004. Platelet-activating factor and kinin-dependent vascular leakage as a novel functional activity of the soluble terminal complement complex. The Journal of Immunology 173: 6921–6927.

    Article  CAS  PubMed  Google Scholar 

  29. Maria, Z., W. Yin, and D.A. Rubenstein. 2014. Combined effects of physiologically relevant disturbed wall shear stress and glycated albumin on endothelial cell functions associated with inflammation, thrombosis and cytoskeletal dynamics. Journal of Diabetes Investigation 5: 372–381.

    Article  CAS  PubMed  Google Scholar 

  30. Meza, D., B. Musmacker, E. Steadman, T. Stransky, D.A. Rubenstein, and W. Yin. 2019. Endothelial cell biomechanical responses are dependent on both fluid shear stress and tensile strain. Cellular and Molecular Bioengineering 12: 311–325.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thompson, R.E., R. Mandle Jr., and A. Kaplan. 1978. Characterization of human high molecular weight kininogen Procoagulant activity associated with the light chain of kinin-free high molecular weight kininogen. The Journal of Experimental Medicine 147: 488–499.

    Article  CAS  PubMed  Google Scholar 

  32. Kaplan, A.P., and M. Silverberg. 1987. The coagulation-kinin pathway of human plasma. The Journal of the American Society of Hematology 70: 1–15.

    CAS  Google Scholar 

  33. Liang, J., S. Gu, X. Mao, Y. Tan, H. Wang, S. Li, and Y. Zhou. 2020. Endothelial cell morphology regulates inflammatory cells through MicroRNA transferred by extracellular vesicles. Frontiers in Bioengineering and Biotechnology 8: 369.

    Article  PubMed  PubMed Central  Google Scholar 

  34. DePaola, N., J.E. Phelps, L. Florez, C.R. Keese, F.L. Minnear, I. Giaever, and P. Vincent. 2001. Electrical impedance of cultured endothelium under fluid flow. Annals of Biomedical Engineering 29: 648–656.

    Article  CAS  PubMed  Google Scholar 

  35. Seebach, J., G. Donnert, R. Kronstein, S. Werth, B. Wojciak-Stothard, D. Falzarano, C. Mrowietz, S.W. Hell, and H.-J. Schnittler. 2007. Regulation of endothelial barrier function during flow-induced conversion to an arterial phenotype. Cardiovascular Research 75: 598–607.

    Article  Google Scholar 

  36. Sanchez, B., L. Li, J. Dulong, G. Aimond, J. Lamartine, G. Liu, and D. Sigaudo-Roussel. 2019. Impact of human dermal microvascular endothelial cells on primary dermal fibroblasts in response to inflammatory stress. Frontiers in Cell and Developmental Biology 7: 44.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Feng, X., M.G. Tonnesen, E.I. Peerschke, and B. Ghebrehiwet. 2002. Cooperation of C1q receptors and integrins in C1q-mediated endothelial cell adhesion and spreading. The Journal of Immunology 168: 2441–2448.

    Article  CAS  PubMed  Google Scholar 

  38. Fernando, L.P., S. Natesan, K. Joseph, and A.P. Kaplan. 2003. High molecular weight kininogen and factor XII binding to endothelial cells and astrocytes. Thrombosis and Haemostasis 90: 787–795.

    Article  CAS  PubMed  Google Scholar 

  39. Hirschy, R., T. Shah, T. Davis, and M.A. Rech. 2018. Treatment of Life-Threatening ACE-inhibitor-induced angioedema. Advanced Emergency Nursing Journal 40: 267–277.

    Article  PubMed  Google Scholar 

  40. Hassen, G.W., H. Kalantari, M. Parraga, R. Chirurgi, C. Meletiche, C. Chan, J. Ciarlo, F. Gazi, C. Lobaito, S. Tadayon, S. Yemane, and C. Velez. 2013. Fresh frozen plasma for progressive and refractory angiotensin-converting enzyme inhibitor-induced angioedema. The Journal of Emergency Medicine 44: 764–772.

    Article  PubMed  Google Scholar 

  41. Cugno, M., J. Nussberger, M. Cicardi, and A. Agostoni. 2003. Bradykinin and the pathophysiology of angioedema. International Immunopharmacology 3: 311–317.

    Article  CAS  PubMed  Google Scholar 

  42. Murphey, L.J., D.L. Hachey, J.A. Oates, J.D. Morrow, and N.J. Brown. 2000. Metabolism of bradykinin In vivo in humans: Identification of BK1-5 as a stable plasma peptide metabolite. Journal of Pharmacology and Experimental Therapeutics 294: 263–269.

    CAS  Google Scholar 

  43. Ferreira, S., and J. Vane. 1967. The disappearance of bradykinin and eledoisin in the circulation and vascular beds of the cat. British Journal of Pharmacology and Chemotherapy 30: 417–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cyr, M., Y. Lepage, C. Blais Jr., N. Gervais, M. Cugno, J.-L. Rouleau, and A. Adam. 2001. Bradykinin and des-Arg9-bradykinin metabolic pathways and kinetics of activation of human plasma. American Journal of Physiology-Heart and Circulatory Physiology 281: H275–H283.

    Article  CAS  PubMed  Google Scholar 

  45. Charignon, D., A. Ghannam, D. Ponard, and C. Drouet. 2017. Hereditary C1 inhibitor deficiency is associated with high spontaneous amidase activity. Molecular Immunology 85: 120–122.

    Article  CAS  PubMed  Google Scholar 

  46. Kajdácsi, E., P.K. Jani, D. Csuka, L.Á. Varga, Z. Prohászka, H. Farkas, and L. Cervenak. 2014. Endothelial cell activation during edematous attacks of hereditary angioedema types I and II. Journal of Allergy and Clinical Immunology 133: 1686–1691.

    Article  Google Scholar 

  47. Bouillet, L., T. Mannic, M. Arboleas, M. Subileau, C. Massot, C. Drouet, P. Huber, and I. Vilgrain. 2011. Hereditary angioedema: Key role for kallikrein and bradykinin in vascular endothelial-cadherin cleavage and edema formation. Journal of Allergy and Clinical Immunology 128: 232–234.

    Article  Google Scholar 

  48. Ghebrehiwet, B., J. Jesty, S. Xu, R. Vinayagasundaram, U. Vinayagasundaram, Y. Ji, A. Valentino, K. Hosszu, S. Mathew, K. Joseph, and A. and Kaplan, E. Peerschke. . 2011. Structure–function studies using deletion mutants identify domains of gC1qR/p33 as potential therapeutic targets for vascular permeability and inflammation. Frontiers in Immunology 2: 58.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ghebrehiwet, B., B.V. Geisbrecht, X. Xu, A.G. Savitt, and E.I. Peerschke. 2019. The C1q receptors: focus on gC1qR/p33 (C1qBP p32 HABP-1) 1. Seminars in Immunology 45: 101338.

  50. Bossi, F., and F. Tedesco. 2013. Role of the B1 bradykinin receptor and gC1qR/p33 in angioedema. Immunology and Allergy Clinics 33: 535–544.

    Google Scholar 

  51. Ghebrehiwet, B., J. Jesty, R. Vinayagasundaram, U. Vinayagasundaram, Y. Ji, A. Valentino, N. Tumma, K.H. Hosszu, and E.I. Peerschke. 2013. Targeting gC1qR domains for therapy against infection and inflammation. Complement Therapeutics 735: 97–110.

    Article  CAS  Google Scholar 

  52. Kaplan, A.P. 2010. Enzymatic pathways in the pathogenesis of hereditary angioedema: The role of C1 inhibitor therapy. Journal of Allergy and Clinical Immunology 126: 918–925.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Chloe Leigh Ong for her technical support in cell morphology analysis. The authors would like to thank Dr. Anette Bygum (University of Odense, Denmark) for providing HAE patient plasma.

Funding

This work was supported in part by the National Institutes of Health (1 R56 AI122376-01A1, Ghebrehiwet).

Author information

Authors and Affiliations

Authors

Contributions

Marina Fandaros: investigation, formal analysis, validation, writing—original draft, visualization, Kusumam Joseph: resources, validation, writing—review and editing, Allen P. Kaplan: resources, conceptualization, writing—review and editing, David A. Rubenstein: conceptualization, methodology, resources, writing—review and editing, Berhane Ghebrehiwet: conceptualization, methodology, resources, writing—original draft, supervision, funding acquisition, and Wei Yin: conceptualization, methodology, validation, formal analysis, resources, writing—original draft, visualization, supervision, project administration.

Corresponding author

Correspondence to Wei Yin.

Ethics declarations

Ethics Approval

No animals or human subjects were used in this study. Human dermal microvascular endothelial cells were purchased from ScienCell Research Laboratory.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fandaros, M., Joseph, K., Kaplan, A.P. et al. gC1qR Antibody Can Modulate Endothelial Cell Permeability in Angioedema. Inflammation 45, 116–128 (2022). https://doi.org/10.1007/s10753-021-01532-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01532-w

KEY WORDS:

Navigation