Skip to main content

gC1qR/p33 Serves as a Molecular Bridge between the Complement and Contact Activation Systems and Is an Important Catalyst in Inflammation

  • Conference paper
Current Topics in Complement

1. Abstract

The receptor for the globular heads of C1q, gC1qR/p33, is a ubiquitously expressed protein, which is distributed both intracellularly and on the cell-surface protein. In addition to C1q, this molecule also is able to bind several other biologically important plasma ligands, including high-molecular-weight kininogen (HK), factor XII (FXII), and multimeric vitronectin. Previous studies have shown that incubation of FXII, prekallikrein, and HK with gC1qR leads to a zinc-dependent and FXII-dependent conversion of prekallikrein to kallikrein, a requisite for kinin generation. In addition, these studies showed that normal plasma, but not plasma deficient in FXII, PK, or HK, activate upon binding to endothelial cells (EC), and that this activation could be inhibited by antibody to gC1qR. In these studies, we show that incubation of serum with microtiter plate bound gC1qR results in complement activation, as evidenced by the binding and activation of C1 and generation of C4d. However, neither C1q-deficient serum nor a truncated form of gC1qR (gC1qRΔ74–96), supported complement activation. Taken together, the data strongly suggest that at sites of inflammation, such as vasculitis and atherosclerosis, where gC1qR as well as its two important plasma ligands, C1q and HK, have been shown to be simultaneously present, soluble or cell-surface-expressed gC1qR may contribute to the inflammatory process by modulating complement activation, kinin generation, and perhaps even initiation of clotting via the contact system. Based on these and other published data, we propose a model of inflammation in which atherogenic factors (e.g., immune complexes, virus, or bacteria) are perceived not only to convert the endothelium into a procoagulant and proinflammatory surface, but also to induce enhanced expression of cell surface molecules such as gC1qR. Enhanced expression of gC1qR in turn leads to: (i) high-affinity C1q binding and cell production of proinflammatory factors, and (ii) high-affinity HK binding and facilitation of the assembly of contact activation proteins leading to generation of bradykinin and possibly coagulation through activation of FXI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. B. Ghebrehiwet, B. L. Lim, E. I. B. Peerschke, A. C. Willis, and K.B.M. Reid, Isolation cDNA cloning, and overexpression of a 33-kDa cell surface glycoprotein that binds to the globular “heads” of C1q, J Exp Med 179, 1809–1821 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. B. Ghebrehiwet, B.-L. Lim, R. Kumar, X. Feng, and E.I.B. Peerschke, gC1q-R/p33, a member of a new class of multifunctional and multicompartmental cellular proteins, is involved in inflammation and infection, Immunol Rev 180, 65–77 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. G. Marques, L.C. Anton, E. Barrio, A. Sanchez, S. Ruiz, F. Gavilanes, and F. Vivanco, Arginine residues of the globular regions of human C1q involved in the interaction with immunoglobulin G. J Biol Chem 268, 10393–10402 (1993).

    PubMed  CAS  Google Scholar 

  4. B. Ghebrehiwet, P.D. Lu, W. Zhang, B.-L. Lim, P. Eggleton, L.E.A. Leigh, K.B.M. Reid, and E.I.B. Peerschke, Identification of functional domains on gC1q-R, a cell surface protein which binds to the globular heads ofC1q, using monoclonal antibodies and synthetic peptide. Hybridoma 15, 333–343 (1996.).

    Article  PubMed  CAS  Google Scholar 

  5. J.Y. Jianzhong, Zhang, A. Krainer, and R-M. Xu, Crystal structure of p32, a doughnut-shaped acidic mitochondrial matrix protein. Proc Natl Acad Sci USA 96, 3572–3577 (1999).

    Article  Google Scholar 

  6. B. Ghebrehiwet, J. Jesty, and E.I.B. Peerschke, gC1q-R/p33: structure-function predictions from the crystal structure. Immunobiology 205, 421–432 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. G.J. Arlaud, C. Gaboriaud, N.M. Thielens, V. Rossi, B. Bersch, J-F. Hernandez, and J.C. Fontecilla-Camps, Structural biology of C1: dissection of a complex molecular machinery. Immunol Rev 180, 136–145 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. K.B.M Reid, Preparation of human C1q, a subcomponent of the first component of the classical pathway of complement. Methods Enzymol 80, 16–25 (1981).

    CAS  Google Scholar 

  9. W.P. Kolb, L.M. Kolb, and E.R. Podack, C1q: isolation from human serum inhigh yield by affinity chromatography and development of a highly sensitive hemolyticassay. J Immunol 122, 2103–2111 (1979).

    PubMed  CAS  Google Scholar 

  10. S.R. Cole, L.K. Ashmand, and P.L. Ey, Biotinylation: an alternative to radioiodination for the identification of cell surface antigens in immunoprecipitates. Mol Immunol 24, 699–705 (1987).

    Article  PubMed  CAS  Google Scholar 

  11. B-L. Lim, K. Preissner, B. Ghebrehiwet, L.E.A. Leigh, and K.B.M. Reid, The binding protein for globular “heads” of complement C1q, gC1q-R: Functional expression and characterization as a novel vitronectin binding factor. J Biol Chem 271, 26739–26744 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. K. Peterson, W. Zhang, P.D. Lu, S.A. Keilbaugh, E.I.P. Peerschke and B. Ghebrehiwet, The C1q binding membrane proteins cC1q-R and gC1q-R are released from activated cells: subcellular localization and immunochemical characterization. Clin. Immunol Immunopathol 84, 17–26 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. M.A. Blajchman and A.H. Ozge-Anwar, The role of the complement system in hemostasis. Prog Hematol 14, 149–159 (1986).

    PubMed  CAS  Google Scholar 

  14. B. Ghebrehiwet, M. Silverberg, and A.P. Kaplan, Activation of the classical pathway of complement by Hageman factor fragment. J Exp Med 152, 665–676 (1981).

    Article  Google Scholar 

  15. K. Yasojima, C. Schwab, E.G. McGeer, and P.L. McGeer, Complement components, but not complement inhibitors, are upregulated in atherosclerotic plaques. Arterioscler. Thromb Vasc Biol 21, 1214–1219 (2001).

    PubMed  CAS  Google Scholar 

  16. E.I.B. Peerschke, J.O. Minta, S.Z. Zhou, A. Bini, A. Gotlieb, R.W. Colman and B. Ghebrehiwet, gC1q-R/p33 expression on human coronary artery atherosclerotic lesions. Mol Immunol 41, 759–766 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. M. Kaul, and M. Loos, The Fc-recognizing collagen-like C1q molecule is a putative type II membrane protein of macrophages. Behring Mitt 93, 171–179 (1993).

    CAS  Google Scholar 

  18. Z. Vegh-Goyarts, E. Goyarts, K. Rozengarten, A. Mazumder and B. Ghebrehiwet, Maturation-dpendent expression of cC1q-R and gC1q-R on human monocyte derived dendritic cells. Int Immunopharmacol 3, 345–357 (2003).

    Article  CAS  Google Scholar 

  19. G. Castellano, A.M. Woltman, A.J. Nauta, A. Ross, L.A. Trouw, M.A. Seelen, F.P. Schena, M. Daha, and C. van Kooten. 2004. Maturation of dendritic cells abrogates C1q production in vivo and in vitro. Blood 103, 3813–3820.

    Article  PubMed  CAS  Google Scholar 

  20. L.E.A. Leigh, B. Ghebrehiwet, T.P.S. Perera, I.N. Bird, P. Strong, U. Kishore, K.B.M. Reid and P. Eggleton, C1q-mediated chemotaxis by human neutrophils: involvement of gC1q-R and G-protein signaling mechanisms. Biochem J 330, 247–254 (1998).

    PubMed  CAS  Google Scholar 

  21. C. Lozada, R. I. Levin, M. Huie, R. Hirschhorn, D. Naime, M. Whittlow, P. A. Recht, B. Golden, and B. Cronstein, Identification of C1q as the heat-labile serum cofactor required for immune complexes to stimulate endothelial expression of the adhesion molecules E-selectin and intracellular and vascular cell adhesion molecules 1. Proc Natl Acad Sci USA 92, 8378–8382 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. R.H. van den Berg, M.C. Faber-Krol, R.B. Sim, and M.R. Daha The first subcomponent of complement C1q triggers the production of IL-6,Il-8 and chemoattractant peptide 1 by human umbilical vein endothelial cells. J Immunol 161, 6924–6934 (1998).

    PubMed  Google Scholar 

  23. A.P. Kaplan, K. Joseph, Y. Shibayama, S. Reddigari, B. Ghebrehiwet and M. Silverberg, The intrinsic coagulation-kinin forming cascade: assembly in plasma and cell surface in inflammation. Adv Immunol 66, 225–272 (1997).

    Article  PubMed  CAS  Google Scholar 

  24. K. Joseph, B. Ghebrehiwet, and A.P. Kaplan, Activation of the kinin-forming cascade on the surface of endothelial cells. Biochem J 382, 71–75 (2001).

    CAS  Google Scholar 

  25. D. Regoli and J. Barabe, Pharmacology of bradykinin and related kinins, Pharmacol. Rev 32, 1–46 (1980).

    PubMed  CAS  Google Scholar 

  26. M. Cugno, J. Nussberger, M. Cicardi, and A. Agostoni, Bradykinin and the pathophysiology of angioedema. Int Immunopharmacol 3, 311–317 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. T.R. Fields, A.P. Kaplan, and B. Ghebrehiwet, Kinin formation in hereditary angioedema plasma: Evidence against kinin derivation from C2 and in support of “spontaneous” formation of bradykinin. J Allergy Clin Immunol 72, 54–60 (1983).

    Article  PubMed  CAS  Google Scholar 

  28. J. Wu, T. Akaike, T. Havashida, T. Okamoto, A. Okuvama, and H. Maeda, Enhanced vascular permeability in solid tumor involving peroxinitrite and matrix metalloproteinases. Jpn J Cancer Res 92, 439–451 (2001).

    PubMed  CAS  Google Scholar 

  29. K. Ishihara, M. Kamata, I. Hayashi, S. Yamashina, M. Majima, Role of bradykinin in vascular permeability and angiogenesis in solid tumor. Int Immunopharmacol 2, 499–509 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. B. Ghebrehiwet, M. Silverberg, and A.P. Kaplan, Activation of the classical pathway of complement by Hageman factor fragment. J Exp Med 153, 665–676 (1981).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Ghebrehiwet, B., CebadaMora, C., Tantral, L., Jesty, J., Peerschke, E.I.B. (2006). gC1qR/p33 Serves as a Molecular Bridge between the Complement and Contact Activation Systems and Is an Important Catalyst in Inflammation. In: Lambris, J.D. (eds) Current Topics in Complement. Advances in Experimental Medicine and Biology, vol 586. Springer, Boston, MA. https://doi.org/10.1007/0-387-34134-X_7

Download citation

Publish with us

Policies and ethics