Skip to main content

Advertisement

Log in

MicroRNA: Could It Play a Role in Bovine Endometritis?

  • Review
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Endometritis in dairy cows is a major economic problem worldwide; without advances in lifestyle management and drug treatment, it causes high morbidity and death. Micro ribonucleic acid (miRNAs) these days is seen as an important part of gene control networks. It is a class of small nucleotides 20–25, single-stranded RNA molecules. In endometritis, the inflammatory response caused by the gram-negative bacteria Escherichia coli (E. coli) alters the expression of miRNA which can regulate the innate immune system. This manuscript reviews (1) the interaction of miRNAs with the signaling of NF-κB and dysregulation of miRNAs and NF-κB activity in endometritis and (2) the activity of miR-let-7c, miR-148a, and miR-488 in NF-κB activation and their effect on endometritis. Cows with reduced immunity are more vulnerable to transition diseases, such as endometritis. During post-partum, cows undergo stress, metabolic disorders, hormonal imbalance, negative energy balance, and changes in diet. One of the many categories of regulatory molecules, which explain its natural function and pathological impact on NF-κB dysregulation, is important to inform the complexity of the immune system and to develop treatments for endometritis. It shows that miRNAs could have multiple applications in veterinary medicine. Nevertheless, a comprehensive study of is essential which should be aimed at exploring the role of microRNA at physiological level and its effect due to dysfunction and dysregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not Applicable

References

  1. Fenwick, M.A., R. Fitzpatrick, D.A. Kenny, M.G. Diskin, J. Patton, J.J. Murphy, and D.C. Wathes. 2008. Interrelationships between negative energy balance (NEB) and IGF regulation in liver of lactating dairy cows. Domestic Animal Endocrinology 34: 31–44.

    Article  CAS  PubMed  Google Scholar 

  2. Wathes, D.C., M. Fenwick, Z. Cheng, N. Bourne, S. Llewellyn, D.G. Morris, D. Kenny, J. Murphy, and R. Fitzpatrick. 2007. Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow. Theriogenology 68 (Suppl 1): S232–S241.

    Article  CAS  PubMed  Google Scholar 

  3. Cronin, J.G., M.L. Turner, L. Goetze, C.E. Bryant, and I.M. Sheldon. 2012. Toll-like receptor 4 and MYD88-dependent signaling mechanisms of the innate immune system are essential for the response to lipopolysaccharide by epithelial and stromal cells of the bovine endometrium. Biology of Reproduction 86: 51.

    Article  PubMed  CAS  Google Scholar 

  4. Werner, A., V. Suthar, J. Plöntzke, and W. Heuwieser. 2012. Relationship between bacteriological findings in the second and fourth weeks postpartum and uterine infection in dairy cows considering bacteriological results. Journal of Dairy Science 95: 7105–7114.

    Article  CAS  PubMed  Google Scholar 

  5. Sheldon, I.M., S.B. Price, J. Cronin, R.O. Gilbert, and J.E. Gadsby. 2009. Mechanisms of infertility associated with clinical and subclinical endometritis in high producing dairy cattle. Reproduction in Domestic Animals 44 (Suppl 3): 1–9.

    Article  PubMed  Google Scholar 

  6. Swangchan-Uthai, T., C.R. Lavender, Z. Cheng, A.A. Fouladi-Nashta, and D.C. Wathes. 2012. Time course of defense mechanisms in bovine endometrium in response to lipopolysaccharide. Biology of Reproduction 87: 135.

    Article  PubMed  CAS  Google Scholar 

  7. Zhao, H.X., J.L. Zhao, J.Z. Shen, H.L. Fan, H. Guan, X.P. An, and P.F. Li. 2014. Prevalence and molecular characterization of fluoroquinolone resistance in Escherichia coli isolates from dairy cattle with endometritis in China. Microbial Drug Resistance 20: 162–169.

    Article  CAS  PubMed  Google Scholar 

  8. Sens, A., and W. Heuwieser. 2013. Presence of Escherichia coli, Trueperella pyogenes, alpha-hemolytic streptococci, and coagulase-negative staphylococci and prevalence of subclinical endometritis. Journal of Dairy Science 96: 6347–6354.

    Article  CAS  PubMed  Google Scholar 

  9. Heumann, D., and T. Roger. 2002. Initial responses to endotoxins and Gram-negative bacteria. Clinica Chimica Acta 323: 59–72.

    Article  CAS  Google Scholar 

  10. Fu, K., X. Lv, W. Li, Y. Wang, H. Li, W. Tian, and R. Cao. 2015. Berberine hydrochloride attenuates lipopolysaccharide-induced endometritis in mice by suppressing activation of NF-κB signal pathway. International Immunopharmacology 24: 128–132.

    Article  CAS  PubMed  Google Scholar 

  11. Kim, M.E., I. Jung, J.S. Lee, J.Y. Na, W.J. Kim, Y.O. Kim, Y.D. Park, and J.S. Lee. 2017. Pseudane-VII isolated from Pseudoalteromonas sp. M2 ameliorates LPS-induced inflammatory response in vitro and in vivo. Marine Drugs: 15.

  12. Chen, Y., Z. Wu, B. Yuan, Y. Dong, L. Zhang, and Z. Zeng. 2018. MicroRNA-146a-5p attenuates irradiation-induced and LPS-induced hepatic stellate cell activation and hepatocyte apoptosis through inhibition of TLR4 pathway. Cell Death & Disease 9: 22.

    Article  CAS  Google Scholar 

  13. Zhao, G., K. Jiang, Y. Yang, T. Zhang, H. Wu, A. Shaukat, C. Qiu, and G. Deng. 2018. The potential therapeutic role of miR-223 in bovine endometritis by targeting the NLRP3 inflammasome. Frontiers in Immunology 9: 1916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wu, H., G. Zhao, K. Jiang, C. Li, C. Qiu, and G. Deng. 2016. Engeletin alleviates lipopolysaccharide-induced endometritis in mice by inhibiting TLR4-mediated NF-κB activation. Journal of Agricultural and Food Chemistry 64: 6171–6178.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, G., C. Yang, J. Yang, P. Liu, K. Jiang, A. Shaukat, H. Wu, and G. Deng. 2018. Placental exosome-mediated Bta-miR-499-Lin28B/let-7 axis regulates inflammatory bias during early pregnancy. Cell Death & Disease 9: 704.

    Article  CAS  Google Scholar 

  16. Zhao, G., T. Zhang, H. Wu, K. Jiang, C. Qiu, and G. Deng. 2019. MicroRNA let-7c improves LPS-induced outcomes of endometritis by suppressing NF-κB signaling. Inflammation 42: 650–657.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, K., J. Yang, C. Yang, T. Zhang, A. Shaukat, X. Yang, A. Dai, and H. Wu. 2020. Deng G: miR-148a suppresses inflammation in lipopolysaccharide-induced endometritis. Journal of Cellular and Molecular Medicine 24: 405–417.

    Article  CAS  PubMed  Google Scholar 

  18. Zisoulis, D.G., Z.S. Kai, R.K. Chang, and A.E. Pasquinelli. 2012. Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature 486: 541–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Valencia-Sanchez, M.A., J. Liu, G.J. Hannon, and R. Parker. 2006. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes & Development 20: 515–524.

    Article  CAS  Google Scholar 

  20. Jiang, K., J. Yang, S. Guo, G. Zhao, H. Wu, and G. Deng. 2019. Peripheral circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute lung inflammation. Molecular Therapy 27: 1758–1771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barwari, T., M. Rienks, and M. Mayr. 2018. MicroRNA-21 and the vulnerability of atherosclerotic plaques. Molecular Therapy 26: 938–940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nahid, M.A., M. Satoh, and E.K. Chan. 2011. MicroRNA in TLR signaling and endotoxin tolerance. Cellular & Molecular Immunology 8: 388–403.

    Article  CAS  Google Scholar 

  23. Baud, V., and M. Karin. 2009. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nature Reviews. Drug Discovery 8: 33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh, J., R.D. Murray, G. Mshelia, and Z. Woldehiwet. 2008. The immune status of the bovine uterus during the peripartum period. Veterinary Journal 175: 301–309.

    Article  CAS  PubMed  Google Scholar 

  25. Aleri, J.W., B.C. Hine, M.F. Pyman, P.D. Mansell, W.J. Wales, B. Mallard, and A.D. Fisher. 2016. Periparturient immunosuppression and strategies to improve dairy cow health during the periparturient period. Research in Veterinary Science 108: 8–17.

    Article  CAS  PubMed  Google Scholar 

  26. Grohn, Y.T., and P.J. Rajala-Schultz. 2000. Epidemiology of reproductive performance in dairy cows. Animal Reproduction Science 60-61: 605–614.

    Article  CAS  PubMed  Google Scholar 

  27. Sheldon, I.M., J.G. Cronin, and J.J. Bromfield. 2019. Tolerance and innate immunity shape the development of postpartum uterine disease and the impact of endometritis in dairy cattle. Annual Review of Animal Biosciences 7: 361–384.

    Article  CAS  PubMed  Google Scholar 

  28. Noakes, D.E., L. Wallace, and G.R. Smith. 1991. Bacterial flora of the uterus of cows after calving on two hygienically contrasting farms. The Veterinary Record 128: 440–442.

    Article  CAS  PubMed  Google Scholar 

  29. Carneiro, L.C., J.G. Cronin, and I.M. Sheldon. 2016. Mechanisms linking bacterial infections of the bovine endometrium to disease and infertility. Reproductive Biology 16: 1–7.

    Article  PubMed  Google Scholar 

  30. Dohmen, M.J., K. Joop, A. Sturk, P.E. Bols, and J.A. Lohuis. 2000. Relationship between intra-uterine bacterial contamination, endotoxin levels and the development of endometritis in postpartum cows with dystocia or retained placenta. Theriogenology 54: 1019–1032.

    Article  CAS  PubMed  Google Scholar 

  31. Donofrio, G., L. Ravanetti, S. Cavirani, S. Herath, A. Capocefalo, and I.M. Sheldon. 2008. Bacterial infection of endometrial stromal cells influences bovine herpesvirus 4 immediate early gene activation: a new insight into bacterial and viral interaction for uterine disease. Reproduction 136: 361–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Williams, E.J., D.P. Fischer, D.E. Noakes, G.C. England, A. Rycroft, H. Dobson, and I.M. Sheldon. 2007. The relationship between uterine pathogen growth density and ovarian function in the postpartum dairy cow. Theriogenology 68: 549–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jost, B.H., and S.J. Billington. 2005. Arcanobacterium pyogenes: molecular pathogenesis of an animal opportunist. Antonie Van Leeuwenhoek 88: 87–102.

    Article  PubMed  Google Scholar 

  34. Billington, S.J., B.H. Jost, W.A. Cuevas, K.R. Bright, and J.G. Songer. 1997. The Arcanobacterium (Actinomyces) pyogenes hemolysin, pyolysin, is a novel member of the thiol-activated cytolysin family. Journal of Bacteriology 179: 6100–6106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gong, T., L. Liu, W. Jiang, and R. Zhou. 2020. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nature Reviews. Immunology 20: 95–112.

    Article  CAS  PubMed  Google Scholar 

  36. Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140: 805–820.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, X., D. Jiang, W. Jiang, M. Zhao, and J. Gan. 2015. Role of TLR4-mediated PI3K/AKT/GSK-3β signaling pathway in apoptosis of rat hepatocytes. BioMed Research International 2015: 631326.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zerbe, H., N. Schneider, W. Leibold, T. Wensing, T.A. Kruip, and H.J. Schuberth. 2000. Altered functional and immunophenotypical properties of neutrophilic granulocytes in postpartum cows associated with fatty liver. Theriogenology 54: 771–786.

    Article  CAS  PubMed  Google Scholar 

  39. Kawai, T., and S. Akira. 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34: 637–650.

    Article  CAS  PubMed  Google Scholar 

  40. Gilbert, R.O. 2011. The effects of endometritis on the establishment of pregnancy in cattle. Reproduction, Fertility, and Development 24: 252–257.

    Article  CAS  PubMed  Google Scholar 

  41. Davies, D., K.G. Meade, S. Herath, P.D. Eckersall, D. Gonzalez, J.O. White, R.S. Conlan, C. O'Farrelly, and I.M. Sheldon. 2008. Toll-like receptor and antimicrobial peptide expression in the bovine endometrium. Reproductive Biology and Endocrinology 6: 53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tobias, P.S., K. Soldau, and R.J. Ulevitch. 1986. Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. The Journal of Experimental Medicine 164: 777–793.

    Article  CAS  PubMed  Google Scholar 

  43. Wright, S.D., P.S. Tobias, R.J. Ulevitch, and R.A. Ramos. 1989. Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. The Journal of Experimental Medicine 170: 1231–1241.

    Article  CAS  PubMed  Google Scholar 

  44. Mitsuzawa, H., C. Nishitani, N. Hyakushima, T. Shimizu, H. Sano, N. Matsushima, K. Fukase, and Y. Kuroki. 2006. Recombinant soluble forms of extracellular TLR4 domain and MD-2 inhibit lipopolysaccharide binding on cell surface and dampen lipopolysaccharide-induced pulmonary inflammation in mice. Journal of Immunology 177: 8133–8139.

    Article  CAS  Google Scholar 

  45. Shimazu, R., S. Akashi, H. Ogata, Y. Nagai, K. Fukudome, K. Miyake, and M. Kimoto. 1999. MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4. The Journal of Experimental Medicine 189: 1777–1782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Selsted, M.E., and A.J. Ouellette. 2005. Mammalian defensins in the antimicrobial immune response. Nature Immunology 6: 551–557.

    Article  CAS  PubMed  Google Scholar 

  47. Diamond, G., M. Zasloff, H. Eck, M. Brasseur, W.L. Maloy, and C.L. Bevins. 1991. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proceedings of the National Academy of Sciences of the United States of America 88: 3952–3956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cormican, P., K.G. Meade, S. Cahalane, F. Narciandi, A. Chapwanya, A.T. Lloyd, and C. O'Farrelly. 2008. Evolution, expression and effectiveness in a cluster of novel bovine beta-defensins. Immunogenetics 60: 147–156.

    Article  CAS  PubMed  Google Scholar 

  49. Brayman, M., A. Thathiah, and D.D. Carson. 2004. MUC1: a multifunctional cell surface component of reproductive tissue epithelia. Reproductive Biology and Endocrinology 2: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kharayat, N.S., G.C. Sharma, G.R. Kumar, D. Bisht, G. Chaudhary, S.K. Singh, G.K. Das, A.K. Garg, H. Kumar, and N. Krishnaswamy. 2019. Differential expression of endometrial toll-like receptors (TLRs) and antimicrobial peptides (AMPs) in the buffalo (Bubalus bubalis) with endometritis. Veterinary Research Communications 43: 261–269.

    Article  PubMed  Google Scholar 

  51. O'Neill, L.A., and A.G. Bowie. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Reviews. Immunology 7: 353–364.

    Article  CAS  PubMed  Google Scholar 

  52. Turner, M.L., J.G. Cronin, G.D. Healey, and I.M. Sheldon. 2014. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology 155: 1453–1465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sheldon, I.M., D.E. Noakes, A.N. Rycroft, D.U. Pfeiffer, and H. Dobson. 2002. Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction 123: 837–845.

    Article  CAS  PubMed  Google Scholar 

  54. Haimerl, P., W. Heuwieser, and S. Arlt. 2018. Short communication: meta-analysis on therapy of bovine endometritis with prostaglandin F(2α)-An update. Journal of Dairy Science 101: 10557–10564.

    Article  CAS  PubMed  Google Scholar 

  55. Herath, S., S.T. Lilly, D.P. Fischer, E.J. Williams, H. Dobson, C.E. Bryant, and I.M. Sheldon. 2009. Bacterial lipopolysaccharide induces an endocrine switch from prostaglandin F2alpha to prostaglandin E2 in bovine endometrium. Endocrinology 150: 1912–1920.

    Article  CAS  PubMed  Google Scholar 

  56. Price, J.C., J.J. Bromfield, and I.M. Sheldon. 2013. Pathogen-associated molecular patterns initiate inflammation and perturb the endocrine function of bovine granulosa cells from ovarian dominant follicles via TLR2 and TLR4 pathways. Endocrinology 154: 3377–3386.

    Article  PubMed  Google Scholar 

  57. Lüttgenau, J., K. Herzog, K. Strüve, S. Latter, A. Boos, R.M. Bruckmaier, H. Bollwein, and M.P. Kowalewski. 2016. LPS-mediated effects and spatio-temporal expression of TLR2 and TLR4 in the bovine corpus luteum. Reproduction 151: 391–399.

    Article  PubMed  CAS  Google Scholar 

  58. Haziak, K., A.P. Herman, K. Wojtulewicz, B. Pawlina, K. Paczesna, J. Bochenek, and D. Tomaszewska-Zaremba. 2018. Effect of CD14/TLR4 antagonist on GnRH/LH secretion in ewe during central inflammation induced by intracerebroventricular administration of LPS. Journal of Animal Science and Biotechnology 9: 52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Haziak, K., A.P. Herman, and D. Tomaszewska-Zaremba. 2014. Effects of central injection of anti-LPS antibody and blockade of TLR4 on GnRH/LH secretion during immunological stress in anestrous ewes. Mediators of Inflammation 2014: 867170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kimura, F., A. Takebayashi, M. Ishida, A. Nakamura, J. Kitazawa, A. Morimune, K. Hirata, A. Takahashi, S. Tsuji, A. Takashima, T. Amano, S. Tsuji, T. Ono, S. Kaku, K. Kasahara, S. Moritani, R. Kushima, and T. Murakami. 2019. Review: chronic endometritis and its effect on reproduction. The Journal of Obstetrics and Gynaecology Research 45: 951–960.

    Article  PubMed  Google Scholar 

  61. Mandhwani, R., A. Bhardwaz, S. Kumar, M. Shivhare, and R. Aich. 2017. Insights into bovine endometritis with special reference to phytotherapy. Veterinary World 10: 1529–1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zebeli, Q., K. Ghareeb, E. Humer, B.U. Metzler-Zebeli, and U. Besenfelder. 2015. Nutrition, rumen health and inflammation in the transition period and their role on overall health and fertility in dairy cows. Research in Veterinary Science 103: 126–136.

    Article  CAS  PubMed  Google Scholar 

  63. Knudsen, L.R., C.C. Karstrup, H.G. Pedersen, J.S. Agerholm, T.K. Jensen, and K. Klitgaard. 2015. Revisiting bovine pyometra--new insights into the disease using a culture-independent deep sequencing approach. Veterinary Microbiology 175: 319–324.

    Article  PubMed  Google Scholar 

  64. Agarkov, N.M., O.V. Golovchenko, Y.A. Blinkov, A.S. Kulabukhov, S.A. Yakovlev, I.V. Budnik, and E.P. Afanasova. 2018. Diagnosis of acute endometritis on hematologic indicators, and given discriminant models. Klinicheskaia Laboratornaia Diagnostika 63: 361–364.

    CAS  PubMed  Google Scholar 

  65. Bicalho, M.L., F.S. Lima, V.S. Machado, E.B. Meira Jr., E.K. Ganda, C. Foditsch, R.C. Bicalho, and R.O. Gilbert. 2016. Associations among Trueperella pyogenes, endometritis diagnosis, and pregnancy outcomes in dairy cows. Theriogenology 85: 267–274.

    Article  CAS  PubMed  Google Scholar 

  66. Madoz, L.V., M.J. Giuliodori, M. Jaureguiberry, J. Plöntzke, M. Drillich, and R.L. de la Sota. 2013. The relationship between endometrial cytology during estrous cycle and cutoff points for the diagnosis of subclinical endometritis in grazing dairy cows. Journal of Dairy Science 96: 4333–4339.

    Article  CAS  PubMed  Google Scholar 

  67. Nyabinwa, P., O.B. Kashongwe, C.D. Hirwa, and B.O. Bebe. 2020. Perception of farmers about endometritis prevention and control measures for zero-grazed dairy cows on smallholder farms in Rwanda. BMC Veterinary Research 16: 175.

    Article  PubMed  PubMed Central  Google Scholar 

  68. French, L. 2003. Prevention and treatment of postpartum endometritis. Current Women's Health Reports 3: 274–279.

    PubMed  Google Scholar 

  69. Daugaard, I., and T.B. Hansen. 2017. Biogenesis and function of ago-associated RNAs. Trends in Genetics 33: 208–219.

    Article  CAS  PubMed  Google Scholar 

  70. Ha, M., and V.N. Kim. 2014. Regulation of microRNA biogenesis. Nature Reviews. Molecular Cell Biology 15: 509–524.

    Article  CAS  PubMed  Google Scholar 

  71. Hastings, M.L., and A.R. Krainer. 2001. Pre-mRNA splicing in the new millennium. Current Opinion in Cell Biology 13: 302–309.

    Article  CAS  PubMed  Google Scholar 

  72. Wahid, F., A. Shehzad, T. Khan, and Y.Y. Kim. 1803. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta 2010: 1231–1243.

    Google Scholar 

  73. Lee, Y., C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. Radmark, S. Kim, and V.N. Kim. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–419.

    Article  CAS  PubMed  Google Scholar 

  74. Okada, C., E. Yamashita, S.J. Lee, S. Shibata, J. Katahira, A. Nakagawa, Y. Yoneda, and T. Tsukihara. 2009. A high-resolution structure of the pre-microRNA nuclear export machinery. Science 326: 1275–1279.

    Article  CAS  PubMed  Google Scholar 

  75. Williams, T., L.H. Ngo, and V.O. Wickramasinghe. 2018. Nuclear export of RNA: different sizes, shapes and functions. Seminars in Cell & Developmental Biology 75: 70–77.

    Article  CAS  Google Scholar 

  76. Clancy, J.W., Y. Zhang, C. Sheehan, and C. D'Souza-Schorey. 2019. An ARF6-Exportin-5 axis delivers pre-miRNA cargo to tumour microvesicles. Nature Cell Biology 21: 856–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lau, P.W., K.Z. Guiley, N. De, C.S. Potter, B. Carragher, and I.J. MacRae. 2012. The molecular architecture of human Dicer. Nature Structural & Molecular Biology 19: 436–440.

    Article  CAS  Google Scholar 

  78. Fukunaga, R., B.W. Han, J.H. Hung, J. Xu, Z. Weng, and P.D. Zamore. 2012. Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 151: 912.

    Article  CAS  PubMed  Google Scholar 

  79. Sheu-Gruttadauria, J., and I.J. MacRae. 2018. Phase transitions in the assembly and function of human miRISC. Cell 173: 946–957 e916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fareh, M., K.H. Yeom, A.C. Haagsma, S. Chauhan, I. Heo, and C. Joo. 2016. TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nature Communications 7: 13694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Meister, G. 2013. Argonaute proteins: functional insights and emerging roles. Nature Reviews. Genetics 14: 447–459.

    Article  CAS  PubMed  Google Scholar 

  82. Wilson, R.C., and J.A. Doudna. 2013. Molecular mechanisms of RNA interference. Annual Review of Biophysics 42: 217–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bartel, D.P. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee, I., S.S. Ajay, J.I. Yook, H.S. Kim, S.H. Hong, N.H. Kim, S.M. Dhanasekaran, A.M. Chinnaiyan, and B.D. Athey. 2009. New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites. Genome Research 19: 1175–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Forman, J.J., and H.A. Coller. 2010. The code within the code: microRNAs target coding regions. Cell Cycle 9: 1533–1541.

    Article  CAS  PubMed  Google Scholar 

  86. Dharap, A., C. Pokrzywa, S. Murali, G. Pandi, and R. Vemuganti. 2013. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One 8: e79467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  88. Lau, N.C., L.P. Lim, E.G. Weinstein, and D.P. Bartel. 2001. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858–862.

    Article  CAS  PubMed  Google Scholar 

  89. Doench, J.G., and P.A. Sharp. 2004. Specificity of microRNA target selection in translational repression. Genes & Development 18: 504–511.

    Article  CAS  Google Scholar 

  90. Stark, A., J. Brennecke, R.B. Russell, and S.M. Cohen. 2003. Identification of Drosophila MicroRNA targets. PLoS Biology 1: E60.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bartel, D.P. 2018. Metazoan MicroRNAs. Cell 173: 20–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gebert, L.F.R., and I.J. MacRae. 2019. Regulation of microRNA function in animals. Nature Reviews. Molecular Cell Biology 20: 21–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brodzki, P., K. Kostro, A. Brodzki, and U. Lisiecka. 2014. Determination of selected parameters for non-specific and specific immunity in cows with subclinical endometritis. Animal Reproduction Science 148: 109–114.

    Article  CAS  PubMed  Google Scholar 

  94. Sheldon, I.M., G.S. Lewis, S. LeBlanc, and R.O. Gilbert. 2006. Defining postpartum uterine disease in cattle. Theriogenology 65: 1516–1530.

    Article  PubMed  Google Scholar 

  95. Gautam, G., T. Nakao, M. Yusuf, and K. Koike. 2009. Prevalence of endometritis during the postpartum period and its impact on subsequent reproductive performance in two Japanese dairy herds. Animal Reproduction Science 116: 175–187.

    Article  PubMed  Google Scholar 

  96. Moffett, A., and C. Loke. 2006. Immunology of placentation in eutherian mammals. Nature Reviews. Immunology 6: 584–594.

    Article  CAS  PubMed  Google Scholar 

  97. Erlebacher, A. 2013. Immunology of the maternal-fetal interface. Annual Review of Immunology 31: 387–411.

    Article  CAS  PubMed  Google Scholar 

  98. Ponsuksili, S., D. Tesfaye, K. Schellander, M. Hoelker, F. Hadlich, M. Schwerin, and K. Wimmers. 2014. Differential expression of miRNAs and their target mRNAs in endometria prior to maternal recognition of pregnancy associates with endometrial receptivity for in vivo- and in vitro-produced bovine embryos. Biology of Reproduction 91: 135.

    Article  PubMed  CAS  Google Scholar 

  99. Lessey, B.A., and S.L. Young. 2019. What exactly is endometrial receptivity? Fertility and Sterility 111: 611–617.

    Article  PubMed  Google Scholar 

  100. Wang, X., F. Tian, C. Chen, Y. Feng, X. Sheng, Y. Guo, and H. Ni. 2019. Exosome-derived uterine microRNAs isolated from cows with endometritis impede blastocyst development. Reproductive Biology 19: 204–209.

    Article  CAS  PubMed  Google Scholar 

  101. Robertson, S.A., P.Y. Chin, J.E. Schjenken, and J.G. Thompson. 2015. Female tract cytokines and developmental programming in embryos. Advances in Experimental Medicine and Biology 843: 173–213.

    Article  CAS  PubMed  Google Scholar 

  102. Wira, C.R., K.S. Grant-Tschudy, and M.A. Crane-Godreau. 2005. Epithelial cells in the female reproductive tract: a central role as sentinels of immune protection. American Journal of Reproductive Immunology 53: 65–76.

    Article  CAS  PubMed  Google Scholar 

  103. Swangchan-Uthai, T., Q. Chen, S.E. Kirton, M.A. Fenwick, Z. Cheng, J. Patton, A.A. Fouladi-Nashta, and D.C. Wathes. 2013. Influence of energy balance on the antimicrobial peptides S100A8 and S100A9 in the endometrium of the post-partum dairy cow. Reproduction 145: 527–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hailemariam, D., S. Ibrahim, M. Hoelker, M. Drillich, W. Heuwieser, C. Looft, M.U. Cinar, E. Tholen, K. Schellander, and D. Tesfaye. 2014. MicroRNA-regulated molecular mechanism underlying bovine subclinical endometritis. Reproduction, Fertility, and Development 26: 898–913.

    Article  CAS  PubMed  Google Scholar 

  105. Kasimanickam, V., and J. Kastelic. 2016. Circulating cell-free mature microRNAs and their target gene prediction in bovine metritis. Scientific Reports 6: 29509.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Huang, J., Z. Ju, Q. Li, Q. Hou, C. Wang, J. Li, R. Li, L. Wang, T. Sun, S. Hang, Y. Gao, M. Hou, and J. Zhong. 2011. Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle. International Journal of Biological Sciences 7: 1016–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hossain, M.M., N. Ghanem, M. Hoelker, F. Rings, C. Phatsara, E. Tholen, K. Schellander, and D. Tesfaye. 2009. Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics 10: 443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Ioannidis, J., and F.X. Donadeu. 2016. Circulating microRNA profiles during the bovine oestrous cycle. PLoS One 11: e0158160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Tscherner, A., G. Gilchrist, N. Smith, P. Blondin, D. Gillis, and J. LaMarre. 2014. MicroRNA-34 family expression in bovine gametes and preimplantation embryos. Reproductive Biology and Endocrinology 12: 85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Reinhart, B.J., F.J. Slack, M. Basson, A.E. Pasquinelli, J.C. Bettinger, A.E. Rougvie, H.R. Horvitz, and G. Ruvkun. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–906.

    Article  CAS  PubMed  Google Scholar 

  111. Calin, G.A., C. Sevignani, C.D. Dumitru, T. Hyslop, E. Noch, S. Yendamuri, M. Shimizu, S. Rattan, F. Bullrich, M. Negrini, and C.M. Croce. 2004. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America 101: 2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Banerjee, S., N. Xie, H. Cui, Z. Tan, S. Yang, M. Icyuz, E. Abraham, and G. Liu. 2013. MicroRNA let-7c regulates macrophage polarization. Journal of Immunology 190: 6542–6549.

    Article  CAS  Google Scholar 

  113. Zhang, W., H. Liu, W. Liu, Y. Liu, and J. Xu. 2015. Polycomb-mediated loss of microRNA let-7c determines inflammatory macrophage polarization via PAK1-dependent NF-κB pathway. Cell Death and Differentiation 22: 287–297.

    Article  CAS  PubMed  Google Scholar 

  114. Iliopoulos, D., H.A. Hirsch, and K. Struhl. 2009. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139: 693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Salilew-Wondim, D., S. Ibrahim, S. Gebremedhn, D. Tesfaye, M. Heppelmann, H. Bollwein, C. Pfarrer, E. Tholen, C. Neuhoff, K. Schellander, and M. Hoelker. 2016. Clinical and subclinical endometritis induced alterations in bovine endometrial transcriptome and miRNome profile. BMC Genomics 17: 218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Jiang, R., Y. Li, A. Zhang, B. Wang, Y. Xu, W. Xu, Y. Zhao, F. Luo, and Q. Liu. 2014. The acquisition of cancer stem cell-like properties and neoplastic transformation of human keratinocytes induced by arsenite involves epigenetic silencing of let-7c via Ras/NF-κB. Toxicology Letters 227: 91–98.

    Article  CAS  PubMed  Google Scholar 

  117. Mitin, N., A.J. Kudla, S.F. Konieczny, and E.J. Taparowsky. 2001. Differential effects of Ras signaling through NFkappaB on skeletal myogenesis. Oncogene 20: 1276–1286.

    Article  CAS  PubMed  Google Scholar 

  118. Zhao G, Zhang T, Ma X, Jiang K, Wu H, Qiu C, Guo M, Deng G: Oridonin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-induced RAW264.7 cells and acute lung injury. Oncotarget 2017, 8:68153-68164.

  119. Mueller, M.D., D.I. Lebovic, E. Garrett, and R.N. Taylor. 2000. Neutrophils infiltrating the endometrium express vascular endothelial growth factor: potential role in endometrial angiogenesis. Fertility and Sterility 74: 107–112.

    Article  CAS  PubMed  Google Scholar 

  120. Borregaard, N., O.E. Sorensen, and K. Theilgaard-Monch. 2007. Neutrophil granules: a library of innate immunity proteins. Trends in Immunology 28: 340–345.

    Article  CAS  PubMed  Google Scholar 

  121. Wang, H., J.Q. Pan, L. Luo, X.J. Ning, Z.P. Ye, Z. Yu, and W.S. Li. 2015. NF-κB induces miR-148a to sustain TGF-β/Smad signaling activation in glioblastoma. Molecular Cancer 14: 2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Patel, V., K. Carrion, A. Hollands, A. Hinton, T. Gallegos, J. Dyo, R. Sasik, E. Leire, G. Hardiman, S.A. Mohamed, S. Nigam, C.C. King, V. Nizet, and V. Nigam. 2015. The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-κB signaling, and inflammatory gene expression in human aortic valve cells. The FASEB Journal 29: 1859–1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhu, Y., L. Gu, Y. Li, X. Lin, H. Shen, K. Cui, L. Chen, F. Zhou, and Q. Zhao. 2017. Zhang J, et al: miR-148a inhibits colitis and colitis-associated tumorigenesis in mice. Cell Death and Differentiation 24: 2199–2209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jiang, K., X. Ma, S. Guo, T. Zhang, G. Zhao, H. Wu, X. Wang, and G. Deng. 2018. Anti-inflammatory effects of rosmarinic acid in lipopolysaccharide-induced mastitis in mice. Inflammation 41: 437–448.

    Article  CAS  PubMed  Google Scholar 

  125. Devaraj, S., P. Tobias, and I. Jialal. 2011. Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes. Cytokine 55: 441–445.

    Article  CAS  PubMed  Google Scholar 

  126. Hyakkoku, K., J. Hamanaka, K. Tsuruma, M. Shimazawa, H. Tanaka, S. Uematsu, S. Akira, N. Inagaki, H. Nagai, and H. Hara. 2010. Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience 171: 258–267.

    Article  CAS  PubMed  Google Scholar 

  127. Herath, S., S.T. Lilly, N.R. Santos, R.O. Gilbert, L. Goetze, C.E. Bryant, J.O. White, J. Cronin, and I.M. Sheldon. 2009. Expression of genes associated with immunity in the endometrium of cattle with disparate postpartum uterine disease and fertility. Reproductive Biology and Endocrinology 7: 55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Jin, W., E.M. Ibeagha-Awemu, G. Liang, F. Beaudoin, and X. Zhao. 2014. Guan le L: Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. BMC Genomics 15: 181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Song, J., D. Kim, C.H. Lee, M.S. Lee, C.H. Chun, and E.J. Jin. 2013. MicroRNA-488 regulates zinc transporter SLC39A8/ZIP8 during pathogenesis of osteoarthritis. Journal of Biomedical Science 20: 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhao, G., K. Jiang, H. Wu, C. Qiu, G. Deng, and X. Peng. 2017. Polydatin reduces Staphylococcus aureus lipoteichoic acid-induced injury by attenuating reactive oxygen species generation and TLR2-NFκB signalling. Journal of Cellular and Molecular Medicine 21: 2796–2808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sikand, K., J.E. Slaibi, R. Singh, and S.D. Slane. 2011. Shukla GC: miR 488* inhibits androgen receptor expression in prostate carcinoma cells. International Journal of Cancer 129: 810–819.

    Article  CAS  PubMed  Google Scholar 

  132. Vergadi, E., K. Vaporidi, and C. Tsatsanis. 2018. Regulation of endotoxin tolerance and compensatory anti-inflammatory response syndrome by non-coding RNAs. Frontiers in Immunology 9: 2705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Yu, D., X. Zhao, J.Z. Cheng, D. Wang, H.H. Zhang, and G.H. Han. 2019. Downregulated microRNA-488 enhances odontoblast differentiation of human dental pulp stem cells via activation of the p38 MAPK signaling pathway. Journal of Cellular Physiology 234: 1442–1451.

    Article  CAS  PubMed  Google Scholar 

  134. Liu, J., S. Guo, K. Jiang, T. Zhang, W. Zhiming, Y. Yaping, Y. Jing, and A. Shaukat. 2020. Deng G: miR-488 mediates negative regulation of the AKT/NF-κB pathway by targeting Rac1 in LPS-induced inflammation. Journal of Cellular Physiology 235: 4766–4777.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Many thanks to all the members of the Huazhong Agricultural University Veterinary Clinical Diagnostic Laboratory for all the helpful suggestions. We are also thankful to the National Natural Science Foundation of China.

Funding

This work was supported by the National Natural Science Foundation of China (No. 31972744, 31772816).

Author information

Authors and Affiliations

Authors

Contributions

T.U. and G.D. conceived the idea and outlined the sketch. T.U. and S.U. wrote the initial manuscript. B.Y. assisted in figures and literature. X.M. modified the manuscript. Z.U. and S.U substantially revised the manuscript. All authors read the manuscript and consented to publication.

Corresponding author

Correspondence to Ganzhen Deng.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

All authors read the manuscript and consented for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, T., Yin, B., Umer, S. et al. MicroRNA: Could It Play a Role in Bovine Endometritis?. Inflammation 44, 1683–1695 (2021). https://doi.org/10.1007/s10753-021-01458-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01458-3

Key Words

Navigation