Skip to main content

Advertisement

Log in

An immuno-blocking agent targeting IL-1β and IL-17A reduces the lesion of DSS-induced ulcerative colitis in mice

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

In recent decades when biological agents have flourished, a part of patients suffering from inflammatory bowel disease (IBD) have received the treatment of tumor necrosis factor inhibitors or IL-1 antibodies. This study aims to investigate the anti-colitis effects of bispecific antibody (FL-BsAb1/17) targeting IL-1β and IL-17A comparing with TNF-α soluble receptor medicine etanercept. IBD model in mice was established by drinking 3% DSS (dextran sulfate sodium salt). On the first day of drinking DSS, treatments with etanercept (5 mg/kg) or different doses of FL-BsAb1/17 (1 mg/kg, 5 mg/kg, and 10 mg/kg) were started by intraperitoneal injection every other day. The results demonstrated that FL-BsAb1/17 treatment was more effective than etanercept at the same dose (5 mg/kg) in relieving the typical symptom of ulcerative colitis induced by DSS (such as the severity score and intestinal shortening), and down-regulating the expression of inflammatory factors (IL-17A, IL-6, IL-12, IL-22, IL-1β, IL-23, TNF-α) in the serum and colon. FL-BsAb1/17 could also reduce the degree of intestinal fibrosis. The same dose of FL-BsAb1/17 (5 mg/kg) performed better than etanercept in down-regulating MDA and up-regulating SOD (superoxide dismutase), CAT (catalase), and T-AOC (total antioxidant capacity) in serum. Both FL-BsAb1/17 and etanercept could reduce the transcription of Bax and increase the transcription of Bcl-2 and slow down apoptosis in colitis colon tissue. We conclude that the blocking of IL-1β and IL-17A can inhibit DSS-induced ulcerative colitis and FL-BsAb1/17 may have potential to become a new dual-target candidate for colitis treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Bernard, K., G. Agnès, and J XR. 2011. Genetics and pathogenesis of inflammatory bowel disease. Nature 474: 307–317.

    Article  CAS  Google Scholar 

  2. Ventham, N.T., N.A. Kennedy, A.T. Adams, R. Kalla, S. Heath, K.R. O'Leary, et al. 2016. Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease. Nature Communications 7: 13507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kappelman, M.D., S.L. Rifas-Shiman, K. Kleinman, O. Dan, A. Bousvaros, R.J. Grand, et al. 2007. The prevalence and geographic distribution of Crohn’s disease and ulcerative colitis in the United States. Clinical Gastroenterology and Hepatology 5: 1424–1429.

    Article  PubMed  Google Scholar 

  4. Sakthivel, K.M., and G. Chandrasekaran. 2014. Protective effect of Acacia ferruginea against ulcerative colitis via modulating inflammatory mediators, cytokine profile and NF-κB signal transduction pathways. Journal of Environmental Pathology, Toxicology and Oncology 33: 83–98.

    Article  PubMed  Google Scholar 

  5. Zhu, Qin, P. Zheng, X. Chen, F. Zhou, Q. He, and Y. Yang. 2018. Andrographolide presents therapeutic effect on ulcerative colitis through the inhibition of IL-23/IL-17 axis. American Journal of Translational Research 10: 465–473.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Philip, A., N.C. Zachos, N. Thuan, G. Liberty, C. Tian-E, L.S. Conklin, et al. 2009. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflammatory Bowel Diseases 15: 341–352.

    Article  Google Scholar 

  7. Song, W.J., Q. Li, M.O. Ryu, A. Nam, J.H. An, Y.C. Jung, J.O. Ahn, and H.Y. Youn. 2019. Canine adipose tissue-derived mesenchymal stem cells pre-treated with TNF-alpha enhance immunomodulatory effects in inflammatory bowel disease in mice. Research in Veterinary Science 125: 176–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sutton, C., C. Brereton, B. Keogh, K.H. Mills, and E.C. Lavelle. 2006. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. Journal of Experimental Medicine 203: 1685–1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bradley, J.R. 2008. TNF-mediated inflammatory disease. Journal of Pathology 214: 149–160.

    Article  CAS  PubMed  Google Scholar 

  10. Wedrychowicz, Andrzej, Przemystaw Tomasik, Andrzej Zajac, et al. 2018. Prognostic value of assessment of stool and serum IL-1β, IL-1ra and IL-6 concentrations in children with active and inactive ulcerative colitis. Archives of Medical Science 1: 107–114.

    Article  CAS  Google Scholar 

  11. Endres, S., M. Schoenharting, N. Landauer, M. Dauer, B. Siegmund, et al. 2004. The interleukin-1 beta-converting enzyme inhibitor pralnacasan reduces dextran sulfate sodium-induced murine colitis and T helper 1 T cell activation. The Journal of Pharmacology and Experimental Therapeutics 308: 583–590.

    Article  PubMed  CAS  Google Scholar 

  12. Al-Sadi, R.M., and T.Y. Ma. 2007. IL-1beta causes an increase in intestinal epithelial tight junction permeability. Journal of Immunology 178: 4641–4649.

    Article  CAS  Google Scholar 

  13. Rana, A.S., G. Shuhong, D. Karol, M.A. Smith, Y. Dongmei, K. Archana, et al. 2012. Mechanism of interleukin-1β induced-increase in mouse intestinal permeability in vivo. Journal of Interferon & Cytokine Research 32: 474–484.

    Article  CAS  Google Scholar 

  14. Mao, L., A. Kitani, W. Strober, and I.J. Fuss. 2018. The Role of NLRP3 and IL-1beta in the pathogenesis of inflammatory bowel disease. Frontiers in Immunology 9: 25–66.

    Article  CAS  Google Scholar 

  15. Shaw, M.H., N. Kamada, Y. Kim, et al. 2012. Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. Journal of Experimental Medicine 209: 251–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rao, D.A., K.J. Tracey, and J.S. Pober. 2007. IL-1alpha and IL-1beta are endogenous mediators linking cell injury to the adaptive alloimmune response. Journal of Immunology 179: 6536–6546.

    Article  CAS  Google Scholar 

  17. Xiaofei, S., D. Junfeng, G. Wenxian, and Z. Yong. 2014. The balance of intestinal Foxp3+ regulatory T cells and Th17 cells and its biological significance. Expert Review of Clinical Immunology 10: 353–362.

    Article  CAS  Google Scholar 

  18. Strober, W., and I.J. Fuss. 2011. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140: 1756–1767.

    Article  CAS  PubMed  Google Scholar 

  19. Fujino, S., A. Andoh, S. Bamba, A. Ogawa, K. Hata, Y. Araki, T. Bamba, and Y. Fujiyama. 2003. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52: 65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ming, L., W. Bing, S. Xiaotong, et al. 2017. Upregulation of intestinal barrier function in mice with DSS-induced colitis by a defined bacterial consortium is associated with expansion of IL-17A producing gamma delta T cells. Frontiers in Immunology 8: 824.

    Article  CAS  Google Scholar 

  21. Peyrin-Biroulet, M.L.A., and L.M. Lémann. 2011. Review article: remission rates achievable by current therapies for inflammatory bowel disease. Alimentary Pharmacology & Therapeutics 33: 870–879.

    Article  CAS  Google Scholar 

  22. Buurman, D.J., T. Blokzijl, E.A.M. Festen, B.T. Pham, K.N. Faber, E. Brouwer, and G. Dijkstra. 2018. Quantitative comparison of the neutralizing capacity, immunogenicity and cross-reactivity of anti-TNF-α biologicals and an Infliximab-biosimilar. PLoS One 13: e0208922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Urbano, P.C., R. Aguirre-Gamboa, A. Ashikov, et al. 2018. TNFAIP3/A20 acts as master switch in TNFα blockade-driven IL-17A expression. The Journal of Allergy and Clinical Immunology 62: 1–13.

    Google Scholar 

  24. Alex, P., N.C. Zachos, T. Nguyen, L. Gonzales, T.E. Chen, L.S. Conklin, M. Centola, and X. Li. 2009. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflammatory Bowel Diseases 15: 341–352.

    Article  PubMed  Google Scholar 

  25. Wang, Y., Q. Wu, Z. Liu, X. Guo, L. Zhou, Y. Wang, L. Song, N. Wang, Q. Zheng, W. Wang, G. Ren, and D. Li. 2017. A recombinant IgG-like bispecific antibody acting as interleukin-1β and interleukin-17A inhibitor exhibits a promising efficacy for rheumatoid arthritis. Biomedicine & Pharmacotherapy 89: 426–437.

    Article  CAS  Google Scholar 

  26. Zhu, Q., P. Zheng, X. Chen, F. Zhou, Q. He, and Y. Yang. 2018. Andrographolide presents therapeutic effect on ulcerative colitis through the inhibition of IL-23/IL-17 axis. American Journal of Translational Research 10: 465–473.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Oz, H.S., T.S. Chen, C.J. Mcclain, and W.J. de Villiers. 2005. Antioxidants as novel therapy in a murine model of colitis. Journal of Nutritional Biochemistry 16: 297–304.

    Article  CAS  PubMed  Google Scholar 

  28. Daniela, I., S. Rosalba, C. Marika, et al. 2018. Therapeutic potential of dinitrobenzene sulfonic acid (DNBS)-induced colitis in mice by targeting IL-1β and IL-18. Biochemical Pharmacology 155: 150–161.

    Article  CAS  Google Scholar 

  29. Bioque, G., G. Monteleone, J.B.A. Crusius, A. Dominianni, N. Perrotti, P.J. Kostense, S.G.M. Meuwissen, F. Pallone, and A.S. Peña. 1995. Further evidence for a genetic association of interleukin-1 receptor antagonist with ulcerative colitis in a northern and a mediterranean population. Gastroenterology 108: A783.

    Article  Google Scholar 

  30. Carter, M.J., S. Jones, N.J. Camp, A. Cox, J. Mee, B. Warren, G.W. Duff, A.J. Lobo, and F.S. di Giovine. 2004. Functional correlates of the interleukin-1 receptor antagonist gene polymorphism in the colonic mucosa in ulcerative colitis. Genes and Immunity 5: 8–15.

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa, A., A. Andoh, Y. Araki, T. Bamba, and Y. Fujiyama. 2004. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clinical Immunology (Orlando) 110: 55–62.

    Article  CAS  Google Scholar 

  32. Hohenberger, M., L.A. Cardwell, E. Oussedik, et al. 2017. Interleukin-17 inhibition: role in psoriasis and inflammatory bowel disease. Journal of Dermatological Treatment 29: 13–18.

    Article  CAS  PubMed  Google Scholar 

  33. Yamada, A., J. Wang, Y. Komaki, F. Komaki, D. Micic, and A. Sakuraba. 2019. Systematic review and meta-analysis: risk of new onset IBD with the use of anti-interleukin-17 agents. Alimentary Pharmacology & Therapeutics 50: 373–385.

    Article  Google Scholar 

  34. Matthew K Smith, Jay Pai, Paul Beck, et al. 2019. Crohn's-like disease in a patient exposed to anti-Interleukin-17 blockade (Ixekizumab) for the treatment of chronic plaque psoriasis: a case report. BMC Gastroenterology 19: 162.

    Article  CAS  Google Scholar 

  35. Perusina Lanfranca, M., Y. Lin, J. Fang, W. Zou, and T. Frankel. 2016. Biological and pathological activities of interleukin-22. Journal of Molecular Medicine 94: 523–534.

    Article  CAS  PubMed  Google Scholar 

  36. Rieder, F., J. Brenmoehl, S. Leeb, J. SchoLmerich, and G. Rogler. 2007. Wound healing and fibrosis in intestinal disease. Gut 56: 130–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones, M.K., M. Tomikawa, B. Mohajer, and A.S. Tarnawski. 1999. Gastrointestinal mucosal regeneration: role of growth factors. Frontiers in Bioscience 4: 303–309.

    Article  Google Scholar 

  38. Wilson, M.S., S.K. Madala, T.R. Ramalingam, B.R. Gochuico, I.O. Rosas, A.W. Cheever, and T.A. Wynn. 2010. Bleomycin and IL-1β-mediated pulmonary fibrosis is IL-17A dependent. Journal of Experimental Medicine 207: 535–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takahashi, N., K. Rieneck, P.M.V.D. Kraan, et al. 2005. Elucidation of IL-1/TGF-β interactions in mouse chondrocyte cell line by genome-wide gene expression. Osteoarthritis and Cartilage 13: 426–438.

    Article  CAS  PubMed  Google Scholar 

  40. Mathur, Ramkumar, Mahabub Maraj Alam, Xiao-Feng Zhao, et al. 2019. Mechanistic insight into the development of TNBS-mediated intestinal fibrosis and evaluating the inhibitory effects of rapamycin. Journal of Visualized Experiments 151: e60067.

    Google Scholar 

  41. D'Arpino, M.C., A.G. Fuchs, and Sara S. Sánchez, et al. 2018. Extracellular matrix remodeling and TGF-β1/Smad signaling in diabetic colon mucosa. Cell Biology International 42: 443–456.

    Article  CAS  PubMed  Google Scholar 

  42. Pechkovsky, D.V., T.L. Hackett, S.S. An, F. Shaheen, L.A. Murray, and D.A. Knight. 2010. Human lung parenchyma but not proximal bronchi produces fibroblasts with enhanced TGF-β signaling and α-SMA expression. American Journal of Respiratory Cell and Molecular Biology 43: 641–651.

    Article  CAS  PubMed  Google Scholar 

  43. Young, Rebecca S., Brody M. Wiles, and Dennis W. McGee. 2017. IL-22 enhances TNF-α- and IL-1-induced CXCL8 responses by intestinal epithelial cell lines. Inflammation 40: 1726–1734.

    Article  CAS  PubMed  Google Scholar 

  44. Almenier, H.A., H.H. Al Menshawy, M.M. Maher, and G.S. Al. 2012. Oxidative stress and inflammatory bowel disease. Frontiers in Bioscience 4: 1335–1344.

    Article  Google Scholar 

  45. Sinha, K., J. Das, P.B. Pal, and P.C. Sil. 2013. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Archives of Toxicology 87: 1157–1180.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (grant numbers: 2017YFD0501004, 2017YFD0501102) and National Natural Science Foundation of China (31600740).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiechao Yin.

Ethics declarations

Ethics approval

This study was carried out in strict accordance with the protocols approved by Animal Care and Use Committee of Materia Medica, P.R. China.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Q., Pi, X., Jiang, Y. et al. An immuno-blocking agent targeting IL-1β and IL-17A reduces the lesion of DSS-induced ulcerative colitis in mice. Inflammation 44, 1724–1736 (2021). https://doi.org/10.1007/s10753-021-01449-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01449-4

KEY WORDS

Navigation