Skip to main content

Advertisement

Log in

The NLRP3 Inflammasome and Its Role in Sepsis Development

  • Review
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The pathophysiology of sepsis is extremely complex. During this disease, the exacerbation of the inflammatory response causes oxidative stress, alterations in mitochondrial energy dynamics, and multiple organ failure. Some studies have highlighted the important role of the NLRP3 inflammasome in sepsis. This inflammasome is a macromolecular protein complex that finely regulates the activation of caspase-1 and the production and secretion of potent pro-inflammatory cytokines such as IL-1β and IL-18. In this review, we elucidate evidences to understand the connection between sepsis development and the NLRP3 inflammasome, the most widely investigated member of this class of receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ziesmann, Markus T., and John C. Marshall. 2018. Multiple organ dysfunction: the defining syndrome of sepsis. Surgical Infections 19: sur.2017.298. doi:https://doi.org/10.1089/sur.2017.298.

    Article  Google Scholar 

  2. Sartelli, Massimo, Yoram Kluger, Luca Ansaloni, Timothy C. Hardcastle, Jordi Rello, Richard R. Watkins, Matteo Bassetti, et al. 2018. Raising concerns about the sepsis-3 definitions. World Journal of Emergency Surgery 13: 1–9. https://doi.org/10.1186/s13017-018-0165-6.

    Article  PubMed  Google Scholar 

  3. Hotchkiss, Richard S., and I.E. Karl. 2003. The pathophysiology and treatment of sepsis. The New England Journal of Medicine 348: 138–150. https://doi.org/10.1056/NEJMra021333.

    Article  CAS  PubMed  Google Scholar 

  4. Censoplano, Nina, Conrad L. Epting, and Bria M. Coates. 2014. The role of the innate immune system in sepsis. Clinical Pediatric Emergency Medicine 15. Elsevier Inc.: 169–176. https://doi.org/10.1016/j.cpem.2014.04.007.

    Article  Google Scholar 

  5. Kuzmich, Nikolay, Konstantin Sivak, Vladimir Chubarev, Yuri Porozov, Tatiana Savateeva-Lyubimova, and Francesco Peri. 2017. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines 5: 34. https://doi.org/10.3390/vaccines5040034.

    Article  CAS  PubMed Central  Google Scholar 

  6. Beutler, B., X. Du, and A. Poltorak. 2001. Identification of Toll-like receptor 4 (TLR4) as the sole conduit for LPS signal transduction: genetic and evolutionary studies. Journal of Endotoxin Research 7: 277–280.

    Article  CAS  Google Scholar 

  7. Beutler, Bruce. 2002. Toll-like receptors: how they work and what they do. Current Opinion in Hematology 9: 2–10.

    Article  Google Scholar 

  8. Kumar, Vijay. 2018. Inflammasomes: Pandora’s box for sepsis. Journal of Inflammation Research 11: 477–502. https://doi.org/10.2147/JIR.S178084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Place, David E., and Thirumala Devi Kanneganti. 2018. Recent advances in inflammasome biology. Current Opinion in Immunology 50. Elsevier Ltd:: 32–38. https://doi.org/10.1016/j.coi.2017.10.011.

    Article  CAS  PubMed  Google Scholar 

  10. Mangan, Matthew S.J., Edward J. Olhava, William R. Roush, H. Martin Seidel, Gary D. Glick, and Eicke Latz. 2018. Targeting the NLRP3 inflammasome in inflammatory diseases. Nature Reviews Drug Discovery 17: 588–606. https://doi.org/10.1038/nrd.2018.97.

    Article  CAS  PubMed  Google Scholar 

  11. Song, Limin, Lei Pei, Shanglong Yao, Yan Wu, and You Shang. 2017. NLRP3 inflammasome in neurological diseases, from functions to therapies. Frontiers in Cellular Neuroscience 11: 1–17. https://doi.org/10.3389/fncel.2017.00063.

    Article  CAS  Google Scholar 

  12. Bauer, Christian, Peter Duewell, Hans-Anton Lehr, Stefan Endres, and Max Schnurr. 2012. Protective and aggravating fffects of NLRP3 inflammasome activation in IBD models: influence of genetic and environmental afctors. Digestive Diseases 30: 82–90. https://doi.org/10.1159/000341681.

    Article  PubMed  Google Scholar 

  13. Duewell, Peter, Hajime Kono, Katey J. Rayner, Cherilyn M. Sirois, Gregory Vladimer, Franz G. Bauernfeind, George S. Abela, et al. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464: 1357–1361. https://doi.org/10.1038/nature08938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Danielski, Lucineia Gainski, Amanda Della Giustina, Marwa Badawy, Tatiana Barichello, João Quevedo, Felipe Dal-Pizzol, and Fabrícia Petronilho. 2017. Brain barrier breakdown as a cause and consequence of neuroinflammation in sepsis. Molecular Neurobiology. Molecular Neurobiology 55: 1–9. https://doi.org/10.1007/s12035-016-0356-7.

    Article  CAS  Google Scholar 

  15. Karasawa, Tadayoshi, and Masafumi Takahashi. 2017. Role of NLRP3 inflammasomes in atherosclerosis. Journal of Atherosclerosis and Thrombosis 24: 443–451. https://doi.org/10.5551/jat.RV17001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patel, Seema. 2017. Inflammasomes, the cardinal pathology mediators are activated by pathogens, allergens and mutagens: A critical review with focus on NLRP3. Biomedicine and Pharmacotherapy 92. Elsevier Masson SAS:: 819–825. https://doi.org/10.1016/j.biopha.2017.05.126.

    Article  CAS  PubMed  Google Scholar 

  17. Sutterwala, Fayyaz, Stefanie Haasken, and Suzanne Cassel. 2014. Mechanism of NLRP3 inflammasome activation. 1319: 82–95. https://doi.org/10.1111/nyas.12458.Mechanism.

  18. He, Yuan, Hideki Hara, and Gabriel Núñez. 2016. Mechanism and regulation of NLRP3 inflammasome activation. Trends in Biochemical Sciences 41: 1012–1021. https://doi.org/10.1016/j.tibs.2016.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hafner-Bratkovič, Iva, and Pablo Pelegrín. 2018. Ion homeostasis and ion channels in NLRP3 inflammasome activation and regulation. Current Opinion in Immunology 52: 8–17. https://doi.org/10.1016/j.coi.2018.03.010.

    Article  CAS  PubMed  Google Scholar 

  20. Shao, Bo Zong, Zhe Qi Xu, Bin Ze Han, Su Ding Feng, and Chong Liu. 2015. NLRP3 inflammasome and its inhibitors: A review. Frontiers in Pharmacology 6: 1–9. https://doi.org/10.3389/fphar.2015.00262.

    Article  CAS  Google Scholar 

  21. Liu, Qiuyun, Danyan Zhang, Diyu Hu, Xiangmei Zhou, and Zhou Yang. 2018. The role of mitochondria in NLRP3 inflammasome activation. Molecular Immunology 103: 115–124. https://doi.org/10.1016/j.molimm.2018.09.010.

    Article  CAS  PubMed  Google Scholar 

  22. Pellegrini, Carolina, Luca Antonioli, Gloria Lopez-Castejon, Corrado Blandizzi, and Matteo Fornai. 2017. Canonical and non-canonical activation of NLRP3 inflammasome at the crossroad between immune tolerance and intestinal inflammation. Frontiers in Immunology 8. https://doi.org/10.3389/fimmu.2017.00036.

  23. Gong, Tao, Yanqing Yang, Tengchuan Jin, Wei Jiang, and Rongbin Zhou. 2018. Orchestration of NLRP3 inflammasome activation by ion fluxes. Trends in Immunology 39: 393–406. https://doi.org/10.1016/j.it.2018.01.009.

    Article  CAS  PubMed  Google Scholar 

  24. Katsnelson, Michael A., Kristen M. Lozada-Soto, Hana M. Russo, Barbara A. Miller, and George R. Dubyak. 2016. NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption: roles for K+ efflux and Ca2+ influx. American Journal of Physiology. Cellular Physiology 311: C83–C100. https://doi.org/10.1152/ajpcell.00298.2015.

    Article  Google Scholar 

  25. Yi, Young-Su. 2017. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology 152: 207–217. https://doi.org/10.1111/imm.12787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, Jieling, Yue Zhao, and Feng Shao. 2015. Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Current Opinion in Immunology 32: 78–83. https://doi.org/10.1016/j.coi.2015.01.007.

    Article  CAS  PubMed  Google Scholar 

  27. Conway-Morris, Andrew, Julie Wilson, and Manu Shankar-Hari. 2018. Immune activation in sepsis. Critical Care Clinics 34: 29–42. https://doi.org/10.1016/j.ccc.2017.08.002.

    Article  PubMed  Google Scholar 

  28. Babelova, Andrea, Kristin Moreth, Wasiliki Tsalastra-greul, Jinyang Zeng-brouwers, Oliver Eickelberg, Marian F. Young, Peter Bruckner, Josef Pfeilschifter, Roland M. Schaefer, and Hermann-josef Gro. 2009. Biglycan , a danger signal that activates the NLRP3 inflammasome via Toll-like and P2X receptors. 284: 24035–24048. https://doi.org/10.1074/jbc.M109.014266.

    Article  CAS  Google Scholar 

  29. Chaly, Yury, Fu Yu, Anthony Marinov, Bruce Hostager, Wei Yan, Brian Campfield, and John A. Kellum, et al. 2014. Follistatin-like protein 1 enhances NLRP3 inflammasome-mediated IL-1β secretion from monocytes and macrophages. European Journal of Immunology 44: 1467–1479. https://doi.org/10.1002/eji.201344063.

    Article  CAS  Google Scholar 

  30. Kim, Min-Ji, Joo-Heon Yoon, and Ji-Hwan Ryu. 2016. Mitophagy: a balance regulator of NLRP3 inflammasome activation. BMB Reports 49: 529–535. https://doi.org/10.5483/BMBRep.2016.49.10.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, Min-Ji, Soo Han Bae, Jae-Chan Ryu, Younghee Kwon, Oh. Ji-Hwan, Jeongho Kwon, Jong-Seok Moon, et al. 2016. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12: 1272–1291. https://doi.org/10.1080/15548627.2016.1183081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jin, Liliang, Sanjay Batra, and Samithamby Jeyaseelan. 2017. Deletion of NLRP3 augments survival during polymicrobial sepsis by decreasing autophagy and enhancing phagocytosis. The Journal of Immunology 198: 1253–1262. https://doi.org/10.4049/jimmunol.1601745.

    Article  CAS  PubMed  Google Scholar 

  33. Lee, Seonmin, Kiichi Nakahira, Jesmond Dalli, Ilias I. Siempos, Paul C. Norris, Romain A. Colas, Jong Seok Moon, et al. 2017. NLRP3 inflammasome deficiency protects against microbial sepsis via increased lipoxin B4 synthesis. American Journal of Respiratory and Critical Care Medicine 196: 713–726. https://doi.org/10.1164/rccm.201604-0892OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gentile, Lori F., Angela L. Cuenca, Alex G. Cuenca, C. Dina, Ricardo Ungaro, Philip A. Efron, Lyle L. Moldawer, and Shawn D. Larson. 2015. Improved emergency myelopoiesis and survival in neonatal sepsis by caspase-1 / 11 ablation: 300–311. https://doi.org/10.1111/imm.12450.

    Article  CAS  Google Scholar 

  35. Mao, Kairui, Shuzhen Chen, Mingkuan Chen, Yonglei Ma, Yan Wang, Bo Huang, Zhengyu He, et al. 2013. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock: 201–212. https://doi.org/10.1038/cr.2013.6.

    Article  CAS  Google Scholar 

  36. Ahn, Huijeong, Jeeyoung Kim, Eui-bae Jeung, and Geun-shik Lee. 2014. Immunobiology Dimethyl sulfoxide inhibits NLRP3 inflammasome activation. Immunobiology 219. Elsevier GmbH.:: 315–322. https://doi.org/10.1016/j.imbio.2013.11.003.

    Article  CAS  PubMed  Google Scholar 

  37. Han, Ji-won, Do-Wan Shim, Eun-jeong Shim, Myong-ki Kim, Yong-kook Shin, Su-Bin Kwak, Sushruta Koppula, Tack-Joong Kim, Tae-Bong Kang, and Kwang-Ho Lee. 2015. Syneilesis palmata (Thunb.) Maxim. extract attenuates inflammatory responses via the regulation of TRIF-dependent signaling and inflammasome activation. Journal of Ethnopharmacology 166: 1–4. https://doi.org/10.1016/j.jep.2015.02.056.

    Article  CAS  PubMed  Google Scholar 

  38. Kumar, Naresh, Geetika Gupta, Kotha Anilkumar, Naireen Fatima, Roy Karnati, Gorla Venkateswara Reddy, Priyanka Voori Giri, and Pallu Reddanna. 2016. 15-Lipoxygenase metabolites of α-linolenic acid, [13-(S)-HPOTrE and 13-(S)-HOTrE], mediate anti-inflammatory effects by inactivating NLRP3 inflammasome. Scientific Reports 6: 31649. https://doi.org/10.1038/srep31649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, Xiaoxuan, Guangji Wang, Emily C. Gurley, and Huiping Zhou. 2014. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. 9: 1–18. https://doi.org/10.1371/journal.pone.0107072.

    Article  Google Scholar 

  40. Costa, P., and S. Ana Paula. 2008. A Santiago, Rodrigo T Amâncio, Antonio Galina, Marcus F Oliveira, and Fernando A Bozza. Sepsis induces brain mitochondrial dysfunction 36: 1925–1932. https://doi.org/10.1097/CCM.0b013e3181760c4b.

    Article  Google Scholar 

  41. Vozza, Angelo, Giovanni Parisi, Francesco De Leonardis, Francesco M. Lasorsa, and Alessandra Castegna. 2014. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. PNAS 111: 960–965. https://doi.org/10.1073/pnas.1317400111.

    Article  CAS  PubMed  Google Scholar 

  42. Moon, Jong-seok, Seonmin Lee, Mi-ae Park, Ilias I. Siempos, Maria Haslip, Patty J. Lee, Mijin Yun, et al. 2015. UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. 125: 665–680. https://doi.org/10.1172/JCI78253.interact.

  43. Harris, James, Tali Lang, Jacinta P W Thomas, Maria B Sukkar, Neel R Nabar, and John H Kehrl. 2017. Autophagy and inflammasomes. Molecular Immunology 86. Elsevier Ltd: 10–15. doi:https://doi.org/10.1016/j.molimm.2017.02.013.

    Article  CAS  Google Scholar 

  44. Murakami, Tomohiko, Johan Ockinger, Jiujiu Yu, Vanessa Byles, Aisleen Mccoll, and Aldebaran M. Hofer. 2012. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. 109: 11282–11287. https://doi.org/10.1073/pnas.1117765109.

    Article  CAS  Google Scholar 

  45. Lavera, Isabel De, Ana Delgado Pavón, Marina Villanueva Paz, Manuel Oropesa-ávila, Mario De, Elizabet Alcocer-gómez, Juan Garrido-maraver, David Cotán, Mónica Álvarez-córdoba, and José A Sánchez-alcázar. 2017. The connections among autophagy, inflammasome and mitochondria: 1030–1038. doi:https://doi.org/10.2174/1389450117666160527143143.

  46. Cosin-roger, Jesus, Simona Simmen, Hassan Melhem, Kirstin Atrott, Isabelle Frey-wagner, Martin Hausmann, Cheryl De Vallière, et al. autophagy activation. Nature Communications, 1–13. US: Springer. https://doi.org/10.1038/s41467-017-00213-3.

  47. Shi, Chong-shan, Kevin Shenderov, Ning-na Huang, Juraj Kabat, Mones Abu-asab, Katherine A. Fitzgerald, Alan Sher, and John H. Kehrl. 2014. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nature Immunology 13: 255–263. https://doi.org/10.1038/ni.2215.Activation.

    Article  Google Scholar 

  48. Nakahira, Kiichi, Jeffrey Adam Haspel, Vijay A.K. Rathinam, Seon-jin Lee, Hilaire C. Lam, Joshua A. Englert, Marlene Rabinovitch, et al. 2011. Autophagy proteins regulate innate immune response by inhibiting NALP3 inflammasome-mediated mitochondrial DNA release. Nature Immunology 12: 222–230. https://doi.org/10.1038/ni.1980.Autophagy.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, Wenbo, Xuemei Xu, Raymond Kao, Tina Mele, Peter Kvietys, and Claudio M. Martin. 2014. Cardiac fibroblasts contribute to myocardial dysfunction in mice with sepsis : the role of NLRP3 inflammasome activation. Vol. 9. https://doi.org/10.1371/journal.pone.0107639.

    Book  Google Scholar 

  50. Rahim, Ibtissem, Bahia Djerdjouri, Ramy K. Sayed, Marisol Fernández-Ortiz, Beatriz Fernández-Gil, Agustín Hidalgo-Gutiérrez, Luis C. López, Germaine Escames, Russel J. Reiter, and Darío Acuña-Castroviejo. 2017. Melatonin administration to wild-type mice and nontreated NLRP3 mutant mice share similar inhibition of the inflammatory response during sepsis. Journal of Pineal Research 63: e12410. https://doi.org/10.1111/jpi.12410.

    Article  CAS  Google Scholar 

  51. Zhang, B.O., Y.U.E. Liu, Yu-bin Sui, Huai-qiu Cai, Wen-xiu Liu, Minling Zhu, and Xin-hua Yin. 2015. Cortistatin inhibits NLRP3 inflammasome activation of cardiac fibroblasts during sepsis. Journal of Cardiac Failure 21. Elsevier Inc:: 426–433. https://doi.org/10.1016/j.cardfail.2015.01.002.

    Article  CAS  PubMed  Google Scholar 

  52. Cornelius, Denise C., Cedar H. Baik, Olivia K. Travis, Dakota L. White, Cassandra M. Young, W. Austin Pierce, Corbin A. Shields, Bibek Poudel, and Jan M. Williams. 2019. NLRP3 inflammasome activation in platelets in response to sepsis. 7: 1–9. https://doi.org/10.14814/phy2.14073.

    Article  Google Scholar 

  53. Chen, Yuan-li, Guo Xu, Xiao Liang, Juan Wei, Jing Luo, Guan-nan Chen, and Xiao-di Yan. 2016. Inhibition of hepatic cells pyroptosis attenuates CLP-induced acute liver injury. Vol. 8, 5685–5695.

    Google Scholar 

  54. Wu, Y., J. Ren, B. Zhou, C. Ding, J. Chen, G. Wang, G. Gu, X. Wu, S. Liu, D. Hu, and J. Li. 2015. Gene silencing of non-obese diabetic receptor family (NLRP3) protects against the sepsis-induced hyper-bile acidaemia in a rat model. Clinical and Experimental Immunology 179: 277–293. https://doi.org/10.1111/cei.12457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hao, Haiping, Lijuan Cao, Changtao Jiang, Yuan Che, Songyang Zhang, Shogo Takahashi, Guangji Wang, and Frank J. Gonzalez. 2017. Farnesoid X Receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis. Cell Metabolism 25: 856–867.e5. https://doi.org/10.1016/j.cmet.2017.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miao, Chun-mu, Xiao-wei Jiang, Kun He, Pei-zhi Li, Zuo-jin Liu, Ding Cao, Ou Zhi-bing, Jian-ping Gong, Chang-an Liu, and Yao Cheng. 2016. Bone marrow stromal cells attenuate LPS-induced mouse acute liver injury via the prostaglandin E 2-dependent repression of the NLRP3 inflammasome in Kupffer cells. Immunology Letters 179: 102–113. https://doi.org/10.1016/j.imlet.2016.09.009.

    Article  CAS  PubMed  Google Scholar 

  57. Lee, Shih-chieh, Jie-sheng Hsu, Chien-chun Li, Ke-ming Chen, and Cheng-tzu Liu. 2015. Protective effect of leaf essential oil from Cinnamomum osmophloeum Kanehira on endotoxin-induced intestinal injury in mice associated with suppressed local expression of molecules in the signaling pathways of. 3: 1–17. https://doi.org/10.1371/journal.pone.0120700.

    Article  Google Scholar 

  58. Zhao, Wen-yu, Lei Zhang, Ming-xing Sui, You-hua Zhu, and Li Zeng. 2016. Protective effects of sirtuin 3 in a murine model of sepsis-induced acute kidney injury. Scientific Reports 6: 33201. https://doi.org/10.1038/srep33201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, Peng, Jian Huang, Yi Li, Ruiming Chang, Haidong Wu, and Jiali Lin. 2015. Exogenous carbon monoxide decreases sepsis-induced acute kidney injury and inhibits NLRP3 inflammasome activation in rats. Vol. 3, 20595–20608. https://doi.org/10.3390/ijms160920595.

    Book  Google Scholar 

  60. Chunzhi, Gong, Li Zunfeng, Qin Chengwei, Bu Xiangmei, and Jingui Yu. 2016. Hyperin protects against LPS-induced acute kidney injury by inhibiting TLR4 and NLRP3 signaling pathways. 7: 82602–82608.

  61. Luo, Yun-peng, Lei Jiang, Kai Kang, Dong-sheng Fei, Xiang-lin Meng, Chuan-chuan Nan, Shang-ha Pan, Ming-ran Zhao, and Ming-yan Zhao. 2014. International Immunopharmacology Hemin inhibits NLRP3 inflammasome activation in sepsis-induced acute lung injury , involving heme oxygenase-1. International Immunopharmacology 20. Elsevier B.V.: 24–32. https://doi.org/10.1016/j.intimp.2014.02.017.

    Article  CAS  PubMed  Google Scholar 

  62. Xu, Feng, Feng Wang, Taoqun Wen, Wentao Sang, Dejian Wang, and Nan Zeng. 2017. Inhibition of NLRP3 inflammasome: a new protective mechanism of cinnamaldehyde in endotoxin poisoning of mice. Immunopharmacology and Immunotoxicology 39: 296–304. https://doi.org/10.1080/08923973.2017.1355377.

    Article  CAS  PubMed  Google Scholar 

  63. Wang, Yu-chang, Qin-xin Liu, Qiang Zheng, Tao Liu, Xi-e Xu, Xing-hua Liu, Wei Gao, Xiang-jun Bai, and Zhan-fei Li. 2019. Dihydromyricetin alleviates sepsis-induced acute lung injury through inhibiting NLRP3 inflammasome-dependent pyroptosis in mice model. Inflammation 42: 1301–1310. https://doi.org/10.1007/s10753-019-00990-7.

    Article  CAS  PubMed  Google Scholar 

  64. Sui, Da-ming, Qun Xie, Wen-jing Yi, Sahil Gupta, Xi-ya Yu, Jin-bao Li, Jun Wang, Jia-feng Wang, and Xiao-ming Deng. 2016. Resveratrol protects against sepsis-associated encephalopathy and inhibits the NLRP3/IL-1 β axis in microglia. Mediators of Inflammation 2016: 1–10. https://doi.org/10.1155/2016/1045657.

    Article  CAS  Google Scholar 

  65. Fu, Qun, Jing Wu, Xiao-Yan Zhou, Mu-Huo Ji, Qing-Hong Mao, Qing Li, Man-Man Zong, Zhi-Qiang Zhou, and Jian-Jun Yang. 2019. NLRP3/Caspase-1 pathway-induced pyroptosis mediated cognitive deficits in a mouse model of sepsis-associated encephalopathy. Inflammation 42: 306–318. https://doi.org/10.1007/s10753-018-0894-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricia Petronilho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest in this publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danielski, L.G., Giustina, A.D., Bonfante, S. et al. The NLRP3 Inflammasome and Its Role in Sepsis Development. Inflammation 43, 24–31 (2020). https://doi.org/10.1007/s10753-019-01124-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01124-9

KEY WORDS

Navigation