Skip to main content

Advertisement

Log in

Target of MCC950 in Inhibition of NLRP3 Inflammasome Activation: a Literature Review

  • Review
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

MCC950 has been proposed as a specific small molecule inhibitor that can selectively block NLRP3 inflammasome activation. However, the exact mechanism of its action is still ambiguous. Accumulating investigations imply that chloride efflux–dependent ASC speck oligomerization and potassium efflux–dependent activation of caspase-1 are the two relatively independent, but indispensable events for NLRP3 inflammasome activation. Previous studies suggested that influence of MCC950 on potassium efflux and its consequent events such as interaction between NEK7 and NLRP3 are limited. However, inhibiting chloride intracellular channel–dependent chloride efflux leads to a modification of inflammatory response, which is similar to the function of MCC950. Based on these findings, we shed new insights on the understanding of MCC950 that its function might correlate with chloride efflux, chloride intracellular channels, or other targets that act upstream of chloride efflux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. He, Y., H. Hara, and G. Nunez. 2016. Mechanism and regulation of NLRP3 inflammasome activation. Trends in Biochemical Sciences 41: 1012–1021.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fabio Martinon, K.B. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL. Molecular Cell 10: 417–426.

    PubMed  Google Scholar 

  3. Guo, H., J.B. Callaway, and J.P. Ting. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature Medicine 21: 677–687.

    PubMed  PubMed Central  Google Scholar 

  4. Sharma BR, Karki R, Kanneganti TD. 2019. Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. European Journal of Immunology.

  5. Zhou, W., C. Chen, Z. Chen, L. Liu, J. Jiang, Z. Wu, M. Zhao, and Y. Chen. 2018. NLRP3: a novel mediator in cardiovascular disease. Journal of Immunology Research 2018: 5702103.

    PubMed  PubMed Central  Google Scholar 

  6. Sepehri, Z., Z. Kiani, M. Afshari, F. Kohan, A. Dalvand, and S. Ghavami. 2017. Inflammasomes and type 2 diabetes: an updated systematic review. Immunology Letters 192: 97–103.

    CAS  PubMed  Google Scholar 

  7. Shen, H.H., Y.X. Yang, X. Meng, X.Y. Luo, X.M. Li, Z.W. Shuai, D.Q. Ye, and H.F. Pan. 2018. NLRP3: a promising therapeutic target for autoimmune diseases. Autoimmunity Reviews 17: 694–702.

    CAS  PubMed  Google Scholar 

  8. Szekanecz, Z., S. Szamosi, G.E. Kovacs, E. Kocsis, and S. Benko. 2019. The NLRP3 inflammasome - interleukin 1 pathway as a therapeutic target in gout. Archives of Biochemistry and Biophysics 670: 82–93.

    CAS  PubMed  Google Scholar 

  9. Perera, A.P., R. Fernando, T. Shinde, R. Gundamaraju, B. Southam, S.S. Sohal, A.A.B. Robertson, K. Schroder, D. Kunde, and R. Eri. 2018. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Scientific Reports 8: 8618.

    PubMed  PubMed Central  Google Scholar 

  10. Coates, B.M., K.L. Staricha, N. Ravindran, C.M. Koch, Y. Cheng, J.M. Davis, D.K. Shumaker, and K.M. Ridge. 2017. Inhibition of the NOD-like receptor protein 3 inflammasome is protective in juvenile influenza A virus infection. Scientific Reports 8: 782.

    Google Scholar 

  11. Honda, H., Y. Nagai, T. Matsunaga, N. Okamoto, Y. Watanabe, K. Tsuneyama, H. Hayashi, I. Fujii, M. Ikutani, Y. Hirai, A. Muraguchi, and K. Takatsu. 2014. Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. Journal of Leukocyte Biology 96: 1087–1100.

    PubMed  Google Scholar 

  12. Lamkanfi, M., J.L. Mueller, A.C. Vitari, S. Misaghi, A. Fedorova, K. Deshayes, W.P. Lee, H.M. Hoffman, and V.M. Dixit. 2009. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. The Journal of Cell Biology. 187: 61–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Coll, R.C., A.A. Robertson, J.J. Chae, S.C. Higgins, R. Munoz-Planillo, M.C. Inserra, I. Vetter, L.S. Dungan, B.G. Monks, A. Stutz, D.E. Croker, M.S. Butler, M. Haneklaus, C.E. Sutton, G. Nunez, E. Latz, D.L. Kastner, K.H. Mills, S.L. Masters, K. Schroder, M.A. Cooper, and L.A. O'Neill. 2015. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nature Medicine 21: 248–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Perregaux, D.G., P. McNiff, R. Laliberte, N. Hawryluk, H. Peurano, E. Stam, J. Eggler, R. Griffiths, M.A. Dombroski, and C.A. Gabel. 2001. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. The Journal of Pharmacology and Experimental Therapeutics. 299: 187–197.

    CAS  PubMed  Google Scholar 

  15. Primiano, M.J., and B.A. Lefker. 2016. Efficacy and pharmacology of the NLRP3 inflammasome inhibitor CP-456,773 (CRID3) in murine models of dermal and pulmonary. Inflammation. 197: 2421–2433.

    CAS  Google Scholar 

  16. van der Heijden, T., E. Kritikou, W. Venema, J. van Duijn, P.J. van Santbrink, B. Slutter, A.C. Foks, I. Bot, and J. Kuiper. 2017. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report. Arteriosclerosis, Thrombosis, and Vascular Biology 37: 1457–1461.

    PubMed  Google Scholar 

  17. Ward, R., W. Li, Y. Abdul, L. Jackson, G. Dong, S. Jamil, J. Filosa, S.C. Fagan, and A. Ergul. 2019. NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacological Research 142: 237–250.

    CAS  PubMed  Google Scholar 

  18. Qu, J., Z. Yuan, G. Wang, X. Wang, and K. Li. 2019. The selective NLRP3 inflammasome inhibitor MCC950 alleviates cholestatic liver injury and fibrosis in mice. International Immunopharmacology 70: 147–155.

    CAS  PubMed  Google Scholar 

  19. Schuh, E., C.J. Gross, D. Wagner, M. Schluter, O. Gross, and T. Kumpfel. 2019. MCC950 blocks enhanced interleukin-1beta production in patients with NLRP3 low penetrance variants. Clinical Immunology 203: 45–52.

    CAS  PubMed  Google Scholar 

  20. Schroder, K., and J. Tschopp. 2010. The inflammasomes. Cell. 140: 821–832.

    CAS  PubMed  Google Scholar 

  21. Shao, B.Z., Z.Q. Xu, B.Z. Han, D.F. Su, and C. Liu. 2015. NLRP3 inflammasome and its inhibitors: a review. Frontiers in Pharmacology 6: 262.

    PubMed  PubMed Central  Google Scholar 

  22. Zhang, Y., X. Lv, Z. Hu, X. Ye, X. Zheng, Y. Ding, P. Xie, and Q. Liu. 2017. Protection of Mcc950 against high-glucose-induced human retinal endothelial cell dysfunction. Cell Death & Disease 8: e2941.

    CAS  Google Scholar 

  23. Gaidt, M.M., and V. Hornung. 2018. The NLRP3 inflammasome renders cell death pro-inflammatory. Journal of Molecular Biology 430: 133–141.

    CAS  PubMed  Google Scholar 

  24. Munoz-Planillo, R., P. Kuffa, G. Martinez-Colon, B.L. Smith, T.M. Rajendiran, and G. Nunez. 2013. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 38: 1142–1153.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Petrilli, V., S. Papin, C. Dostert, A. Mayor, F. Martinon, and J. Tschopp. 2007. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death and Differentiation 14: 1583–1589.

    CAS  PubMed  Google Scholar 

  26. Gov, L., C.A. Schneider, T.S. Lima, W. Pandori, and M.B. Lodoen. 2017. NLRP3 and potassium efflux drive rapid IL-1beta release from primary human monocytes during Toxoplasma gondii infection. Journal of Immunology (Baltimore, Md. : 1950) 199: 2855–2864.

    CAS  Google Scholar 

  27. Gaidt, M.M., T.S. Ebert, D. Chauhan, T. Schmidt, J.L. Schmid-Burgk, F. Rapino, A.A. Robertson, M.A. Cooper, T. Graf, and V. Hornung. 2016. Human monocytes engage an alternative inflammasome pathway. Immunity. 44: 833–846.

    CAS  PubMed  Google Scholar 

  28. Fry, A.M., L. O'Regan, S.R. Sabir, and R. Bayliss. 2012. Cell cycle regulation by the NEK family of protein kinases. Journal of Cell Science 125: 4423–4433.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. He, Y., M.Y. Zeng, D. Yang, B. Motro, and G. Nunez. 2016. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature. 530: 354–357.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi, H., Y. Wang, X. Li, X. Zhan, M. Tang, M. Fina, L. Su, D. Pratt, C.H. Bu, S. Hildebrand, S. Lyon, L. Scott, J. Quan, Q. Sun, J. Russell, S. Arnett, P. Jurek, D. Chen, V.V. Kravchenko, J.C. Mathison, E.M. Moresco, N.L. Monson, R.J. Ulevitch, and B. Beutler. 2016. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nature Immunology 17: 250–258.

    CAS  PubMed  Google Scholar 

  31. Green, J.P., S. Yu, F. Martin-Sanchez, P. Pelegrin, G. Lopez-Castejon, C.B. Lawrence, and D. Brough. 2018. Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proceedings of the National Academy of Sciences of the United States of America 115: E9371–E9E80.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu, K.Y., C.Y. Wu, S. Tong, P. Xiong, and S.H. Wang. 2018. The selective Nlrp3 inflammasome inhibitor Mcc950 attenuates lung ischemia-reperfusion injury. Biochemical and Biophysical Research Communications 503: 3031–3037.

    CAS  PubMed  Google Scholar 

  33. Masumoto, J., S. Taniguchi, K. Ayukawa, H. Sarvotham, T. Kishino, N. Niikawa, E. Hidaka, T. Katsuyama, T. Higuchi, and J. Sagara. 1999. ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. The Journal of Biological Chemistry. 274: 33835–33838.

    CAS  PubMed  Google Scholar 

  34. Gumucio, D.L., A. Diaz, P. Schaner, N. Richards, C. Babcock, M. Schaller, and T. Cesena. 2002. Fire and ICE: the role of pyrin domain-containing proteins in inflammation and apoptosis. Clinical and Experimental Rheumatology 20: S45–S53.

    CAS  PubMed  Google Scholar 

  35. Awad, F., E. Assrawi, C. Louvrier, C. Jumeau, S. Georgin-Lavialle, G. Grateau, S. Amselem, I. Giurgea, and S.A. Karabina. 2018. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacology & Therapeutics 187: 133–149.

    CAS  Google Scholar 

  36. Dick, M.S., L. Sborgi, S. Ruhl, S. Hiller, and P. Broz. 2016. ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nature Communications 7: 11929.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Richards, N., P. Schaner, A. Diaz, J. Stuckey, E. Shelden, A. Wadhwa, and D.L. Gumucio. 2001. Interaction between pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. The Journal of Biological Chemistry. 276: 39320–39329.

    CAS  PubMed  Google Scholar 

  38. Verhoef, P.A., S.B. Kertesy, K. Lundberg, J.M. Kahlenberg, and G.R. Dubyak. 2005. Inhibitory effects of chloride on the activation of caspase-1, IL-1 secretion, and cytolysis by the P2X7 receptor. The Journal of Immunology. 175: 7623–7634.

    CAS  PubMed  Google Scholar 

  39. Tang, T., X. Lang, C. Xu, X. Wang, T. Gong, Y. Yang, J. Cui, L. Bai, J. Wang, W. Jiang, and R. Zhou. 2017. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nature Communications 8: 202.

    PubMed  PubMed Central  Google Scholar 

  40. Daniels, M.J., J. Rivers-Auty, T. Schilling, N.G. Spencer, W. Watremez, V. Fasolino, S.J. Booth, C.S. White, A.G. Baldwin, S. Freeman, R. Wong, C. Latta, S. Yu, J. Jackson, N. Fischer, V. Koziel, T. Pillot, J. Bagnall, S.M. Allan, P. Paszek, J. Galea, M.K. Harte, C. Eder, C.B. Lawrence, and D. Brough. 2016. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nature Communications 7: 12504.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Laliberte, R.E., D.G. Perregaux, L.R. Hoth, P.J. Rosner, C.K. Jordan, K.M. Peese, J.F. Eggler, M.A. Dombroski, K.F. Geoghegan, and C.A. Gabel. 2003. Glutathione s-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1beta posttranslational processing. The Journal of Biological Chemistry. 278: 16567–16578.

    CAS  PubMed  Google Scholar 

  42. Domingo-Fernandez, R., R.C. Coll, J. Kearney, S. Breit, and L.A.J. O'Neill. 2017. The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1beta transcription and activate the NLRP3 inflammasome. The Journal of Biological Chemistry. 292: 12077–12087.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Argenzio, E., and W.H. Moolenaar. 2016. Emerging biological roles of Cl- intracellular channel proteins. Journal of Cell Science 129: 4165–4174.

    CAS  PubMed  Google Scholar 

  44. He, G., Y. Ma, S.Y. Chou, H. Li, C. Yang, J.Z. Chuang, C.H. Sung, and A. Ding. 2011. Role of CLIC4 in the host innate responses to bacterial lipopolysaccharide. European Journal of Immunology 41: 1221–1230.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81873130, No. 81573733, No. 81804025), Tianjin Municipal Natural Science Foundation (No. 18JCYBJC94500), Scientific and Technological Research Program of Tianjin Municipal Education Commission (No. 2017KJ164), and 2017 Annual Graduate Students Innovation Fund (School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; No. CXJJLX201701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xijuan Jiang or Bin Yu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Chen, Y., Sun, Y. et al. Target of MCC950 in Inhibition of NLRP3 Inflammasome Activation: a Literature Review. Inflammation 43, 17–23 (2020). https://doi.org/10.1007/s10753-019-01098-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01098-8

KEY WORDS

Navigation