pp 1–12 | Cite as

Autotaxin-Lysophosphatidic Acid Axis Blockade Improves Inflammation by Regulating Th17 Cell Differentiation in DSS-Induced Chronic Colitis Mice

  • Ya-Lan Dong
  • Xue-Yun Duan
  • Yu-Jin Liu
  • Heng FanEmail author
  • Meng Xu
  • Qian-Yun Chen
  • Zhen Nan
  • Hui Wu
  • Shuang-Jiao Deng
Original Article


Autotaxin-lysophosphatidic acid (ATX-LPA) axis is closely associated with several inflammation-related diseases. In the colonic mucosa of patients with chronic ulcerative colitis (UC), the expression of ATX and the percentage of Th17 cells are found to increase. However, it is unclear whether ATX-LPA axis affects the differentiation of Th17 cells in chronic UC. To investigate whether ATX-LPA axis contributes to Th17 cell differentiation, a mouse model of chronic UC was established by drinking water with DSS at intervals. ATX inhibitor was used as an intervention. The disease active index (DAI), colonic weight to length ratio, colon length, colon histopathology, and MAdCAM-1 were observed. Additionally, the expression of ATX, LPA receptor, CD34, IL-17A, IL-21, IL-6, ROR-γt, STAT3 in colonic tissue, and the percentage of Th17 cells in spleens and mesenteric lymph nodes (MLNs) were measured using different methods. ATX blockade was able to relieve symptoms and inflammatory response of DSS-induced chronic colitis. The DAI and colonic weight to length ratio were apparently decreased, while the colon length was increased. The pathological damage and colitis severity were lighter in the inhibitor group than that in the DSS group. Inhibiting ATX reduced the expression of ATX, LPA receptor, and CD34 and also decreased the percentages of Th17 cells in spleens and MLNs and the expressions of IL-17A and IL-21, as well as the factors in Th17 cell signaling pathway including IL-6, ROR-γt, and STAT3 in colonic tissue. ATX-LPA axis blockade could alleviate inflammation by suppressing Th17 cell differentiation in chronic UC.


ulcerative colitis (UC) autotaxin (ATX) lysophosphatidic acid (LPA) Th17 cell differentiation 



This study was supported by the National Natural Science Foundation of China (No. 81573784 and 81774093).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ungaro, R., S. Mehandru, P.B. Allen, L. Peyrin-Biroulet, and J.F. Colombel. 2017. Ulcerative colitis. Lancet 389: 1756–1770.CrossRefGoogle Scholar
  2. 2.
    Ng, S.C., H.Y. Shi, N. Hamidi, F.E. Underwood, W. Tang, E.I. Benchimol, R. Panaccione, S. Ghosh, J.C.Y. Wu, F.K.L. Chan, J.J.Y. Sung, and G.G. Kaplan. 2018. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390: 2769–2778.CrossRefGoogle Scholar
  3. 3.
    Bopanna, S., A.N. Ananthakrishnan, S. Kedia, V. Yajnik, and V. Ahuja. 2017. Risk of colorectal cancer in Asian patients with ulcerative colitis: a systematic review and meta-analysis. The Lancet Gastroenterology & Hepatology 2: 269–276.CrossRefGoogle Scholar
  4. 4.
    Cleynen, I., G. Boucher, L. Jostins, L.P. Schumm, S. Zeissig, T. Ahmad, V. Andersen, J.M. Andrews, V. Annese, S. Brand, S.R. Brant, J.H. Cho, M.J. Daly, M. Dubinsky, R.H. Duerr, L.R. Ferguson, A. Franke, R.B. Gearry, P. Goyette, H. Hakonarson, J. Halfvarson, J.R. Hov, H. Huang, N.A. Kennedy, L. Kupcinskas, I.C. Lawrance, J.C. Lee, J. Satsangi, S. Schreiber, E. Théâtre, A. van der Meulen-de Jong, R.K. Weersma, D.C. Wilson, International Inflammatory Bowel Disease Genetics Consortium, M. Parkes, S. Vermeire, J.D. Rioux, J. Mansfield, M.S. Silverberg, G. Radford-Smith, D. McGovern, J.C. Barrett, and C.W. Lees. 2016. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet 387: 156–167.CrossRefGoogle Scholar
  5. 5.
    Hibi, T., and H. Ogata. 2006. Novel pathophysiological concepts of inflammatory bowel disease. Journal of Gastroenterology 41: 10–16.CrossRefGoogle Scholar
  6. 6.
    Xu, M., D. Zuo, X. Liu, H. Fan, Q. Chen, S. Deng, Z. Shou, Q. Tang, J. Yang, Z. Nan, H. Wu, Y. Dong, and Y. Liu. 2017. MiR-155 contributes to Th17 cells differentiation in dextran sulfate sodium (DSS)-induced colitis mice via Jarid2. Biochemical and Biophysical Research Communications 488: 6–14.CrossRefGoogle Scholar
  7. 7.
    Fujino, S., A. Andoh, S. Bamba, A. Ogawa, K. Hata, Y. Araki, T. Bamba, and Y. Fujiyama. 2003. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52: 65–70.CrossRefGoogle Scholar
  8. 8.
    Harrington, L.E., P.R. Mangan, and C.T. Weaver. 2006. Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Current Opinion in Immunology 18: 349–356.CrossRefGoogle Scholar
  9. 9.
    Kobayashi, T., S. Okamoto, T. Hisamatsu, N. Kamada, H. Chinen, R. Saito, M.T. Kitazume, A. Nakazawa, A. Sugita, K. Koganei, K. Isobe, and T. Hibi. 2008. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease. Gut 57: 1682–1689.CrossRefGoogle Scholar
  10. 10.
    Hirota, K., M. Hashimoto, Y. Ito, M. Matsuura, H. Ito, M. Tanaka, H. Watanabe, G. Kondoh, A. Tanaka, K. Yasuda, M. Kopf, A.J. Potocnik, B. Stockinger, N. Sakaguchi, and S. Sakaguchi. 2018. Autoimmune Th17 cells induced synovial stromal and innate lymphoid cell secretion of the cytokine GM-CSF to initiate and augment autoimmune arthritis. Immunity 48: 1220–1232.e5.CrossRefGoogle Scholar
  11. 11.
    Machino-Ohtsuka, T., K. Tajiri, T. Kimura, S. Sakai, A. Sato, T. Yoshida, et al. 2014. Tenascin-C aggravates autoimmune myocarditis via dendritic cell activation and Th17 cell differentiation. Journal of the American Heart Association 3: e001052.CrossRefGoogle Scholar
  12. 12.
    Coskun, M., M. Salem, J. Pedersen, and O.H. Nielsen. 2013. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacological Research 76: 1–8.CrossRefGoogle Scholar
  13. 13.
    Withers, D.R., M.R. Hepworth, X. Wang, E.C. Mackley, E.E. Halford, E.E. Dutton, C.L. Marriott, V. Brucklacher-Waldert, M. Veldhoen, J. Kelsen, R.N. Baldassano, and G.F. Sonnenberg. 2016. Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nature Medicine 22: 319–323.CrossRefGoogle Scholar
  14. 14.
    Guo, D., Y. Chen, S. Wang, L. Yu, Y. Shen, H. Zhong, et al. Exosomes from heat-stressed tumour cells inhibit tumour growth by converting regulatory T cells to Th17 cells via IL-6. Immunology 2017.Google Scholar
  15. 15.
    Li, X., A.R. Cannon, A.M. Hammer, N.L. Morris, and M.A. Choudhry. 2017. IL-23 restoration of Th17 effector function is independent of IL-6 and TGF-beta in a mouse model of alcohol and burn injury. Journal of Leukocyte Biology 102: 915–923.CrossRefGoogle Scholar
  16. 16.
    Ghoreschi, K., A. Laurence, X.P. Yang, C.M. Tato, M.J. McGeachy, J.E. Konkel, et al. 2010. Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467: 967–971.CrossRefGoogle Scholar
  17. 17.
    Kano, K., N. Arima, M. Ohgami, and J. Aoki. 2008. LPA and its analogs-attractive tools for elucidation of LPA biology and drug development. Current Medicinal Chemistry 15: 2122–2131.CrossRefGoogle Scholar
  18. 18.
    Umezu-Goto, M., Y. Kishi, A. Taira, K. Hama, N. Dohmae, K. Takio, T. Yamori, G.B. Mills, K. Inoue, J. Aoki, and H. Arai. 2002. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. The Journal of Cell Biology 158: 227–233.CrossRefGoogle Scholar
  19. 19.
    Gardell, S.E., A.E. Dubin, and J. Chun. 2006. Emerging medicinal roles for lysophospholipid signaling. Trends in Molecular Medicine 12: 65–75.CrossRefGoogle Scholar
  20. 20.
    Chu, X., X. Wei, S. Lu, and P. He. 2015. Autotaxin-LPA receptor axis in the pathogenesis of lung diseases. International Journal of Clinical and Experimental Medicine 8: 17117–17122.Google Scholar
  21. 21.
    Zhang, Y., Y.C. Chen, M.F. Krummel, and S.D. Rosen. 2012. Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. Journal of Immunology 189: 3914–3924.CrossRefGoogle Scholar
  22. 22.
    Mills, G.B., and W.H. Moolenaar. 2003. The emerging role of lysophosphatidic acid in cancer. Nature Reviews. Cancer 3: 582–591.CrossRefGoogle Scholar
  23. 23.
    Tager, A.M. 2012. Autotaxin emerges as a therapeutic target for idiopathic pulmonary fibrosis: limiting fibrosis by limiting lysophosphatidic acid synthesis. American Journal of Respiratory Cell and Molecular Biology 47: 563–565.CrossRefGoogle Scholar
  24. 24.
    Watanabe, N., H. Ikeda, K. Nakamura, R. Ohkawa, Y. Kume, J. Aoki, K. Hama, S. Okudaira, M. Tanaka, T. Tomiya, M. Yanase, K. Tejima, T. Nishikawa, M. Arai, H. Arai, M. Omata, K. Fujiwara, and Y. Yatomi. 2007. Both plasma lysophosphatidic acid and serum autotaxin levels are increased in chronic hepatitis C. Journal of Clinical Gastroenterology 41: 616–623.CrossRefGoogle Scholar
  25. 25.
    Hozumi, H., R. Hokari, C. Kurihara, K. Narimatsu, H. Sato, S. Sato, T. Ueda, M. Higashiyama, Y. Okada, C. Watanabe, S. Komoto, K. Tomita, A. Kawaguchi, S. Nagao, and S. Miura. 2013. Involvement of autotaxin/lysophospholipase D expression in intestinal vessels in aggravation of intestinal damage through lymphocyte migration. Laboratory Investigation 93: 508–519.CrossRefGoogle Scholar
  26. 26.
    Wirtz, S., V. Popp, M. Kindermann, K. Gerlach, B. Weigmann, S. Fichtner-Feigl, and M.F. Neurath. 2017. Chemically induced mouse models of acute and chronic intestinal inflammation. Nature Protocols 12: 1295–1309.CrossRefGoogle Scholar
  27. 27.
    Yang, J., X.X. Liu, H. Fan, Q. Tang, Z.X. Shou, D.M. Zuo, Z. Zou, M. Xu, Q.Y. Chen, Y. Peng, S.J. Deng, and Y.J. Liu. 2015. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis. PLoS One 10: e0140551.CrossRefGoogle Scholar
  28. 28.
    Saunders, L.P., A. Ouellette, R. Bandle, W.C. Chang, H. Zhou, R.N. Misra, E.M. de la Cruz, and D.T. Braddock. 2008. Identification of small-molecule inhibitors of autotaxin that inhibit melanoma cell migration and invasion. Molecular Cancer Therapeutics 7: 3352–3362.CrossRefGoogle Scholar
  29. 29.
    Totsuka, T., T. Kanai, Y. Nemoto, S. Makita, R. Okamoto, K. Tsuchiya, and M. Watanabe. 2007. IL-7 is essential for the development and the persistence of chronic colitis. Journal of Immunology 178: 4737–4748.CrossRefGoogle Scholar
  30. 30.
    Zhang, L., Y. Zhang, W. Zhong, C. Di, X. Lin, and Z. Xia. 2014. Heme oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell balance. The Journal of Biological Chemistry 289: 26847–26858.CrossRefGoogle Scholar
  31. 31.
    Vermeire, S., W.J. Sandborn, S. Danese, X. Hebuterne, B.A. Salzberg, M. Klopocka, et al. 2017. Anti-MAdCAM antibody (PF-00547659) for ulcerative colitis (TURANDOT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 390: 135–144.CrossRefGoogle Scholar
  32. 32.
    Fujimori, H., S. Miura, S. Koseki, R. Hokari, S. Komoto, Y. Hara, S. Hachimura, S. Kaminogawa, and H. Ishii. 2002. Intravital observation of adhesion of lamina propria lymphocytes to microvessels of small intestine in mice. Gastroenterology 122: 734–744.CrossRefGoogle Scholar
  33. 33.
    Knowlden, S., and S.N. Georas. 2014. The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. Journal of Immunology 192: 851–857.CrossRefGoogle Scholar
  34. 34.
    Wei, L., A. Laurence, K.M. Elias, and J.J. O'Shea. 2007. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. The Journal of Biological Chemistry 282: 34605–34610.CrossRefGoogle Scholar
  35. 35.
    Peloquin, J.M., G. Goel, E.J. Villablanca, and R.J. Xavier. 2016. Mechanisms of pediatric inflammatory bowel disease. Annual Review of Immunology 34: 31–64.CrossRefGoogle Scholar
  36. 36.
    Low, D., D.D. Nguyen, and E. Mizoguchi. 2013. Animal models of ulcerative colitis and their application in drug research. Drug Design, Development and Therapy 7: 1341–1357.Google Scholar
  37. 37.
    Chen, Q., X. Duan, H. Fan, M. Xu, Q. Tang, L. Zhang, Z. Shou, X. Liu, D. Zuo, J. Yang, S. Deng, Y. Dong, H. Wu, Y. Liu, and Z. Nan. 2017. Oxymatrine protects against DSS-induced colitis via inhibiting the PI3K/AKT signaling pathway. International Immunopharmacology 53: 149–157.CrossRefGoogle Scholar
  38. 38.
    Liu, Y., Y. Dong, X. Zhu, H. Fan, M. Xu, Q. Chen, Z. Nan, H. Wu, S. Deng, X. Liu, D. Zuo, and J. Yang. 2018. MiR-155 inhibition ameliorates 2, 4, 6-Trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis in rat via influencing the differentiation of Th17 cells by Jarid2. International Immunopharmacology 64: 401–410.CrossRefGoogle Scholar
  39. 39.
    Xu, A., K.K.M. Ahsanul, F. Chen, Z. Zhong, H.C. Chen, and Y. Song. 2016. Overexpression of autotaxin is associated with human renal cell carcinoma and bladder carcinoma and their progression. Medical Oncology 33: 131.CrossRefGoogle Scholar
  40. 40.
    Castelino, F.V., G. Bain, V.A. Pace, K.E. Black, L. George, C.K. Probst, L. Goulet, R. Lafyatis, and A.M. Tager. 2016. An autotaxin/lysophosphatidic acid/interleukin-6 amplification loop drives scleroderma fibrosis. Arthritis & Rhematology 68: 2964–2974.CrossRefGoogle Scholar
  41. 41.
    Orosa, B., S. Garcia, and C. Conde. 2015. The autotaxin-lysophosphatidic acid pathway in pathogenesis of rheumatoid arthritis. European Journal of Pharmacology 765: 228–233.CrossRefGoogle Scholar
  42. 42.
    Lee, S.J., and C.C. Yun. 2010. Colorectal cancer cells - proliferation, survival and invasion by lysophosphatidic acid. The International Journal of Biochemistry & Cell Biology 42: 1907–1910.CrossRefGoogle Scholar
  43. 43.
    Lee, S.C., Y. Fujiwara, J. Liu, J. Yue, Y. Shimizu, D.D. Norman, Y. Wang, R. Tsukahara, E. Szabo, R. Patil, S. Banerjee, D.D. Miller, L. Balazs, M.C. Ghosh, C.M. Waters, T. Oravecz, and G.J. Tigyi. 2015. Autotaxin and LPA1 and LPA5 receptors exert disparate functions in tumor cells versus the host tissue microenvironment in melanoma invasion and metastasis. Molecular Cancer Research 13: 174–185.CrossRefGoogle Scholar
  44. 44.
    Savaskan, N.E., L. Rocha, M.R. Kotter, A. Baer, G. Lubec, L.A. van Meeteren, Y. Kishi, J. Aoki, W.H. Moolenaar, R. Nitsch, and A.U. Bräuer. 2007. Autotaxin (NPP-2) in the brain: cell type-specific expression and regulation during development and after neurotrauma. Cellular and Molecular Life Sciences 64: 230–243.CrossRefGoogle Scholar
  45. 45.
    Tager, A.M., P. LaCamera, B.S. Shea, G.S. Campanella, M. Selman, Z. Zhao, V. Polosukhin, J. Wain, B.A. Karimi-Shah, N.D. Kim, W.K. Hart, A. Pardo, T.S. Blackwell, Y. Xu, J. Chun, and A.D. Luster. 2008. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nature Medicine 14: 45–54.CrossRefGoogle Scholar
  46. 46.
    Saunders, J.A., L.C. Rogers, C. Klomsiri, L.B. Poole, and L.W. Daniel. 2010. Reactive oxygen species mediate lysophosphatidic acid induced signaling in ovarian cancer cells. Free Radical Biology & Medicine 49: 2058–2067.CrossRefGoogle Scholar
  47. 47.
    Saatian, B., Y. Zhao, D. He, S.N. Georas, T. Watkins, E.W. Spannhake, and V. Natarajan. 2006. Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells. The Biochemical Journal 393: 657–668.CrossRefGoogle Scholar
  48. 48.
    Chou, C.H., L.H. Wei, M.L. Kuo, Y.J. Huang, K.P. Lai, C.A. Chen, and C.Y. Hsieh. 2005. Up-regulation of interleukin-6 in human ovarian cancer cell via a Gi/PI3K-Akt/NF-kappaB pathway by lysophosphatidic acid, an ovarian cancer-activating factor. Carcinogenesis 26: 45–52.CrossRefGoogle Scholar
  49. 49.
    Wu, X., and H. Wang. 2013. The important role of lysophosphatidic acid (LPA) induced interleukin-6 and -8 syntheses by human osteoblasts in skeletal biology. Bone 55: 268.CrossRefGoogle Scholar
  50. 50.
    Hwang, Y.S., S.K. Lee, K.K. Park, and W.Y. Chung. 2012. Secretion of IL-6 and IL-8 from lysophosphatidic acid-stimulated oral squamous cell carcinoma promotes osteoclastogenesis and bone resorption. Oral Oncology 48: 40–48.CrossRefGoogle Scholar
  51. 51.
    Kime, C., M. Sakaki-Yumoto, L. Goodrich, Y. Hayashi, S. Sami, R. Derynck, M. Asahi, B. Panning, S. Yamanaka, and K. Tomoda. 2016. Autotaxin-mediated lipid signaling intersects with LIF and BMP signaling to promote the naive pluripotency transcription factor program. Proceedings of the National Academy of Sciences of the United States of America 113: 12478–12483.CrossRefGoogle Scholar
  52. 52.
    Seo, J.H., K.J. Jeong, W.J. Oh, H.J. Sul, J.S. Sohn, Y.K. Kim, D.Y. Cho, J.K. Kang, C.G. Park, and H.Y. Lee. 2010. Lysophosphatidic acid induces STAT3 phosphorylation and ovarian cancer cell motility: their inhibition by curcumin. Cancer Letters 288: 50–56.CrossRefGoogle Scholar
  53. 53.
    Yang, X.O., A.D. Panopoulos, R. Nurieva, S.H. Chang, D. Wang, S.S. Watowich, and C. Dong. 2007. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. The Journal of Biological Chemistry 282: 9358–9363.CrossRefGoogle Scholar
  54. 54.
    Yang, Y., R.C. Winger, P.W. Lee, P.K. Nuro-Gyina, A. Minc, M. Larson, Y. Liu, W. Pei, E. Rieser, M.K. Racke, and A.E. Lovett-Racke. 2015. Impact of suppressing retinoic acid-related orphan receptor gamma t (ROR)gamma t in ameliorating central nervous system autoimmunity. Clinical and Experimental Immunology 179: 108–118.CrossRefGoogle Scholar
  55. 55.
    Tokumura, A. 2002. Physiological and pathophysiological roles of lysophosphatidic acids produced by secretory lysophospholipase D in body fluids. Biochimica et Biophysica Acta 1582: 18–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ya-Lan Dong
    • 1
  • Xue-Yun Duan
    • 2
    • 3
  • Yu-Jin Liu
    • 1
  • Heng Fan
    • 1
    Email author
  • Meng Xu
    • 1
  • Qian-Yun Chen
    • 1
  • Zhen Nan
    • 1
  • Hui Wu
    • 1
  • Shuang-Jiao Deng
    • 1
  1. 1.Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Hubei Provincial Hospital of Traditional Chinese MedicineWuhanChina
  3. 3.Hubei Province Academy of Traditional Chinese MedicineWuhanChina

Personalised recommendations