Skip to main content

Advertisement

Log in

Anti-Inflammatory Effects of Gingerol on Lipopolysaccharide-Stimulated RAW 264.7 Cells by Inhibiting NF-κB Signaling Pathway

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Gingerol was the main functional substance of Zingiberaceous plant which has been known as traditional medicine for thousands of years. The purpose of this experiment was to explore anti-inflammatory effects of gingerol and study the possible mechanism in lipopolysaccharide (LPS)-stimulated RAW246.7 cells. The cells were treated with 10 μg/mL LPS and 300, 200, 100, and 50 μg/mL gingerol for 24 h. The cytotoxicity of gingerol was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zoliumbromide (MTT) method. Nitric oxide (NO) production was observed using Griess assays. Prostaglandin E2 (PGE2) and pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 have been analyzed by ELISA. Real-time PCR was used to detect the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IL-6, and IL-1β in LPS-induced RAW246.7 cells. Nuclear transcription factor kappa-B (NF-κB) signaling pathway-related proteins have been assessed by western blot assays. The determination of MTT showed that cell viability was not significantly affected by up to 300 μg/mL gingerol. Compared with LPS group, 50, 100, 200, and 300 μg/mL gingerol can inhibit the production of NO and the inhibitory rate was 10.4, 29.1, 58.9, and 62.4%, respectively. The results indicated gingerol existed anti-inflammatory effect. In addition, gingerol also observably inhibited LPS-induced TNF-α, IL-1β, IL-6, and PGE2 (p < 0.01) expression and secretion in a dose-dependent manner. At the genetic level, after the intervention of gingerol, mRNA transcriptions of iNOS, COX-2, IL-6, and IL-1β were all decreased. The protein expressions of iNOS, NF-κB, p-p65, and p-IκB were significantly increased in LPS-induced cells, while these changes were reversed by the treatment with gingerol. This study suggested that gingerol exerts its anti-inflammatory activities in LPS-induced macrophages which can inhibit the production of inflammatory cytokines by targeting the NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhai, X.-T., J.-Q. Chen, C.-H. Jiang, J. Song, D.-Y. Li, H. Zhang, X.-B. Jia, W. Tan, S.-X. Wang, Y. Yang, and F.-X. Zhu. 2016. Corydalis bungeana Turcz. attenuates LPS-induced inflammatory responses via the suppression of NF-κB signaling pathway in vitro and in vivo. Journal of Ethnopharmacology 194: 153–161.

    Article  PubMed  Google Scholar 

  2. Ahn, C.-B., Y.-S. Cho, and J.-Y. Je. 2015. Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chemistry. 168: 151–156.

    Article  PubMed  CAS  Google Scholar 

  3. Baldwin, G.S. 2000. Do NSAIDs contribute to acute fatty liver of pregnancy? Medical Hypotheses 54 (5): 846.

    Article  PubMed  CAS  Google Scholar 

  4. Stuart, M.J., S.J. Gross, H. Elrad, et al. 1982. Effects of acetylsalicylic acid ingestion on maternal and neonatal hemostatic. The New England Journal of Medicine 307: 909.

    Article  PubMed  CAS  Google Scholar 

  5. Guo, J.-B., Y. Fan, W.-J. Zhang, H. Wu, L.-M. Du, and Y.-X. Chang. 2017. Extraction of gingerols and shogaols from ginger ( Zingiber officinale Roscoe) through microwave technique using ionic liquids. Journal of Food Composition and Analysis 62: 35–42.

    Article  CAS  Google Scholar 

  6. Young, H.-Y., Y.-L. Luo, H.-Y. Cheng, W.-C. Hsieh, J.-C. Liao, and W.-H. Peng. 2005. Analgesic and anti-inflammatory activities of [6]-gingerol. Journal of Ethnopharmacology 96 (1–2): 207–210.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, F., K. Thakur, F. Hu, J.-G. Zhang, and Z.-J. Wei. 2017. Cross-talk between 10-gingerol and its anti-cancerous potential: A recent update. Food Function 8:2635–2649.

    Article  PubMed  CAS  Google Scholar 

  8. Brahma Naidu, P., V.V. Uddandrao, R. Ravindar Naik, P. Suresh, B. Meriga, M.S. Begum, R. Pandiyan, and G. Saravanan. 2016. Ameliorative potential of gingerol: Promising modulation of inflammatory factors and lipid marker enzymes expressions in HFD induced obesity in rats. Molecular and Cellular Endocrinology 419: 139–147.

    Article  PubMed  CAS  Google Scholar 

  9. Li, Y., B. Xu, M. Xu, D. Chen, Y. Xiong, M. Lian, Y. Sun, Z. Tang, L. Wang, C. Jiang, and Y. Lin. 2017. 6-Gingerol protects intestinal barrier from ischemia/reperfusion-induced damage via inhibition of p38 MAPK to NF-kappaB signalling. Pharmacological Research 119: 137–148.

    Article  PubMed  CAS  Google Scholar 

  10. Gibon, E., L.Y. Lu, K. Nathan, and S.B. Goodman. 2017. Inflammation, ageing, and bone regeneration. Journal of Orthopaedic Translation 10: 28–35.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen, L.Z., W.W. Sun, L. Bo, J.Q. Wang, C. Xiu, W.J. Tang, J.B. Shi, H.P. Zhou, and X.H. Liu. 2017. New arylpyrazoline-coumarins: Synthesis and anti-inflammatory activity. European Journal of Medicinal Chemistry 138: 170–181.

    Article  PubMed  CAS  Google Scholar 

  12. Gu, Q., H. Yang, and Q. Shi. 2017. Macrophages and bone inflammation. Journal of Orthopaedic Translation 10: 86–93.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dong, L., L. Yin, Y. Zhang, X. Fu, and J. Lu. 2017. Anti-inflammatory effects of ononin on lipopolysaccharide-stimulated RAW 264.7 cells. Molecular Immunology 83: 46–51.

    Article  PubMed  CAS  Google Scholar 

  14. Wu, J., M. Li, L. Liu, Q. An, J. Zhang, J. Zhang, M. Li, W. Duan, D. Liu, Z. Li, and C. Luo. 2013. Nitric oxide and interleukins are involved in cell proliferation of RAW264.7 macrophages activated by viili exopolysaccharides. Inflammation 36 (4): 954–961.

    Article  PubMed  CAS  Google Scholar 

  15. Jeon, H.J., H.J. Kang, H.J. Jung, Y.S. Kang, C.J. Lim, Y.M. Kim, and E.H. Park. 2008. Anti-inflammatory activity of Taraxacum officinale. Journal of Ethnopharmacology 115 (1): 82–88.

    Article  PubMed  Google Scholar 

  16. Zhang, L.B., Z.T. Man, W. Li, W. Zhang, X.Q. Wang, and S. Sun. 2017. Calcitonin protects chondrocytes from lipopolysaccharide-induced apoptosis and inflammatory response through MAPK/Wnt/NF-kappaB pathways. Molecular Immunology 87: 249–257.

    Article  PubMed  CAS  Google Scholar 

  17. Olbert, M., J. Gdula-Argasinska, G. Nowak, and T. Librowski. 2017. Beneficial effect of nanoparticles over standard form of zinc oxide in enhancing the anti-inflammatory activity of ketoprofen in rats. Pharmacological Reports 69 (4): 679–682.

    Article  PubMed  CAS  Google Scholar 

  18. Sheeba, M.S., and V.V. Asha. 2009. Cardiospermum halicacabum ethanol extract inhibits LPS induced COX-2, TNF-alpha and iNOS expression, which is mediated by NF-kappaB regulation, in RAW264.7 cells. Journal of Ethnopharmacology 124 (1): 39–44.

    Article  PubMed  CAS  Google Scholar 

  19. Bockerstett, K.A., and R.J. DiPaolo. 2017. Regulation of gastric carcinogenesis by inflammatory cytokines. Cellular and Molecular Gastroenterology and Hepatology. 4 (1): 47–53.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chu, C.Q. 2016. Molecular probing of TNF: From identification of therapeutic target to guidance of therapy in inflammatory diseases. Cytokine 101: 64–69.

    Article  PubMed  CAS  Google Scholar 

  21. Hu, P., G.M. Jiang, Y. Wu, B.Y. Huang, S.Y. Liu, D.D. Zhang, Y. Xu, Y.F. Wu, X. Xia, W. Wei, and B. Hu. 2017. TNF-alpha is superior to conventional inflammatory mediators in forecasting IVIG nonresponse and coronary arteritis in Chinese children with Kawasaki disease. Clinica chimica acta. International Journal of Clinical Chemistry 471: 76–80.

    PubMed  CAS  Google Scholar 

  22. Parameswaran, N., and S. Patial. 2010. Tumor necrosis factor-α signaling in macrophages. Critical Reviews™ in. Eukaryotic Gene Expression 20: 87–103.

    Article  CAS  Google Scholar 

  23. Szot, P., A. Franklin, D.P. Figlewicz, T.P. Beuca, K. Bullock, K. Hansen, W.A. Banks, M.A. Raskind, and E.R. Peskind. 2017. Multiple lipopolysaccharide (LPS) injections alter interleukin 6 (IL-6), IL-7, IL-10 and IL-6 and IL-7 receptor mRNA in CNS and spleen. Neuroscience 355: 9–21.

    Article  PubMed  CAS  Google Scholar 

  24. Seppola, M., A.N. Larsen, K. Steiro, B. Robertsen, and I. Jensen. 2008. Characterisation and expression analysis of the interleukin genes, IL-1beta, IL-8 and IL-10, in Atlantic cod (Gadus morhua L.). Molecular Immunology 45 (4): 887–897.

    Article  PubMed  CAS  Google Scholar 

  25. Yang, Q., Q. Chu, X. Zhao, and T. Xu. 2017. Characterization of IL-1beta and two types of IL-1 receptors in miiuy croaker and evolution analysis of IL-1 family. Fish Shellfish Immunology 63: 165–172.

    Article  PubMed  CAS  Google Scholar 

  26. Zhou, L., and D.Y. Zhu. 2009. Neuronal nitric oxide synthase: Structure, subcellular localization, regulation, and clinical implications. Nitric Oxide-Biology and Chemistry 20 (4): 223–230.

    Article  PubMed  CAS  Google Scholar 

  27. Bredt, D.S. 2009. Endogenous nitric oxide synthesis: Biological functions and pathophysiology. Free Radical Research 31 (6): 577–596.

    Article  Google Scholar 

  28. Manferdini, C., F. Paolella, E. Gabusi, L. Gambari, A. Piacentini, G. Filardo, S. Fleury-Cappellesso, A. Barbero, M. Murphy, and G. Lisignoli. 2017. Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: In vitro evaluation. Osteoarthritis and Cartilage 25 (7): 1161–1171.

    Article  PubMed  CAS  Google Scholar 

  29. Liu, N., Y. Zhuang, Z. Zhou, J. Zhao, Q. Chen, and J. Zheng. 2017. NF-kappaB dependent up-regulation of TRPC6 by Abeta in BV-2 microglia cells increases COX-2 expression and contributes to hippocampus neuron damage. Neuroscience Letters 651: 1–8.

    Article  PubMed  CAS  Google Scholar 

  30. Katanić, J., T. Boroja, V. Mihailović, S. Nikles, S.-P. Pan, G. Rosić, D. Selaković, J. Joksimović, S. Mitrović, and R. Bauer. 2016. In vitro and in vivo assessment of meadowsweet (Filipendula ulmaria) as anti-inflammatory agent. Journal of Ethnopharmacology 193: 627–636.

    Article  PubMed  Google Scholar 

  31. Perkins, N.D. 1997. Achieving transcriptional specificity with NF-ĸB. Int J Biochem Cell B 29: 1433–1448.

    Article  CAS  Google Scholar 

  32. Oeckinghaus, A., and S. Ghosh. 2009. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology 1 (4): a000034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gong, J., Q. Chen, Y. Yan, and G. Pang. 2014. Effect of casein glycomacropeptide on subunit p65 of nuclear transcription factor-κB in lipopolysaccharide-stimulated human colorectal tumor HT-29 cells. Food Science and Human Wellness 3 (2): 51–55.

    Article  Google Scholar 

  34. Oh, Y.C., Y.H. Jeong, J.H. Ha, et al. 2014. Oryeongsan inhibits LPS-induced production of inflammatory mediators via blockade of the NF-kappaB, MAPK pathways and leads to HO-1 induction in macrophage cells[J]. BMC Complementary and Alternative Medicine 14: 242.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gugasyan, R., R. Grumont, M. Grossmann, et al. 2000. Rel/NF-kappaB transcription factors: Key mediators of B-cell activation[J]. Immunological Reviews 176: 134–140.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the agricultural technology system innovation team of Hebei, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghong Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, N., Sang, Y., Liu, W. et al. Anti-Inflammatory Effects of Gingerol on Lipopolysaccharide-Stimulated RAW 264.7 Cells by Inhibiting NF-κB Signaling Pathway. Inflammation 41, 835–845 (2018). https://doi.org/10.1007/s10753-018-0737-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0737-3

KEY WORDS

Navigation