Skip to main content

Advertisement

Log in

TREM2 Ameliorates Neuronal Tau Pathology Through Suppression of Microglial Inflammatory Response

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

As a recently identified susceptibility gene for Alzheimer’s disease (AD), triggering receptor expressed on myeloid cells 2 (TREM2) encodes an immune receptor that is uniquely expressed on microglia, functioning as a modulator of microglial functions including phagocytosis and inflammatory response. Several lines of evidence suggest that TREM2 is upregulated and positively correlates with tau pathology in the brains of AD patients. Meanwhile, our recent study showed that knockdown of TREM2 markedly exacerbated neuronal tau hyperphosphorylation in the brains of P301S-tau transgenic mice, implying that TREM2 might exert a protective role against tau pathology under AD context. However, the precise mechanisms underlying this observation remain largely unclear. In this study, by employing a microglial-neuronal co-culture model, we showed that microglial inflammatory response induced by lipopolysaccharide led to tau hyperphosphorylation in neurons via activation of a major tau kinase glycogen synthase kinase 3β, confirming the pathogenic effects of activated microglia on the progression of tau pathology. More importantly, by manipulating TREM2 levels in microglia with a lentiviral-mediated strategy, we demonstrated that TREM2 ameliorated the pathological effects of activated microglia on neuronal tau hyperphosphorylation via suppression of microglial inflammatory response. Taken together, these findings uncover the underlying mechanisms by which TREM2 protects against tau pathology and highlight TREM2 as a potential therapeutic target for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cruchaga, C., J.S. Kauwe, O. Harari, S.C. Jin, Y. Cai, C.M. Karch, B.A. Benitez, et al. 2013. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron 78 (2): 256–268. https://doi.org/10.1016/j.neuron.2013.02.026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Giannakopoulos, P., F.R. Herrmann, T. Bussiere, C. Bouras, E. Kovari, D.P. Perl, J.H. Morrison, G. Gold, and P.R. Hof. 2003. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60 (9): 1495–1500.

    Article  PubMed  CAS  Google Scholar 

  3. Guerreiro, R., A. Wojtas, J. Bras, M. Carrasquillo, E. Rogaeva, E. Majounie, C. Cruchaga, et al. 2013. TREM2 variants in Alzheimer’s disease. The New England Journal of Medicine 368 (2): 117–127. https://doi.org/10.1056/NEJMoa1211851.

    Article  PubMed  CAS  Google Scholar 

  4. Hamerman, J.A., J.R. Jarjoura, M.B. Humphrey, M.C. Nakamura, W.E. Seaman, and L.L. Lanier. 2006. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. Journal of Immunology 177 (4): 2051–2055.

    Article  CAS  Google Scholar 

  5. Honson, N.S., and J. Kuret. 2008. Tau aggregation and toxicity in tauopathic neurodegenerative diseases. Journal of Alzheimer’s Disease 14 (4): 417–422.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hsieh, C.L., M. Koike, S.C. Spusta, E.C. Niemi, M. Yenari, M.C. Nakamura, and W.E. Seaman. 2009. A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. Journal of Neurochemistry 109 (4): 1144–1156. https://doi.org/10.1111/j.1471-4159.2009.06042.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ito, H., and J.A. Hamerman. 2012. TREM-2, triggering receptor expressed on myeloid cell-2, negatively regulates TLR responses in dendritic cells. European Journal of Immunology 42 (1): 176–185. https://doi.org/10.1002/eji.201141679.

    Article  PubMed  CAS  Google Scholar 

  8. Jiang, T., L. Tan, X.C. Zhu, Q.Q. Zhang, L. Cao, M.S. Tan, L.Z. Gu, et al. 2014. Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology 39 (13): 2949–2962. https://doi.org/10.1038/npp.2014.164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Jiang, T., L. Tan, X.C. Zhu, J.S. Zhou, L. Cao, M.S. Tan, H.F. Wang, Q. Chen, Y.D. Zhang, and J.T. Yu. 2015. Silencing of TREM2 exacerbates tau pathology, neurodegenerative changes, and spatial learning deficits in P301S tau transgenic mice. Neurobiology of Aging 36 (12): 3176–3186. https://doi.org/10.1016/j.neurobiolaging.2015.08.019.

    Article  PubMed  CAS  Google Scholar 

  10. Jiang, T., J.T. Yu, X.C. Zhu, and L. Tan. 2013. TREM2 in Alzheimer’s disease. Molecular Neurobiology 48 (1): 180–185. https://doi.org/10.1007/s12035-013-8424-8.

    Article  PubMed  CAS  Google Scholar 

  11. Jiang, T., J.T. Yu, X.C. Zhu, M.S. Tan, L.Z. Gu, Y.D. Zhang, and L. Tan. 2014. Triggering receptor expressed on myeloid cells 2 knockdown exacerbates aging-related neuroinflammation and cognitive deficiency in senescence-accelerated mouse prone 8 mice. Neurobiology of Aging 35 (6): 1243–1251. https://doi.org/10.1016/j.neurobiolaging.2013.11.026.

    Article  PubMed  CAS  Google Scholar 

  12. Jiang, T., J.T. Yu, X.C. Zhu, Q.Q. Zhang, L. Cao, H.F. Wang, M.S. Tan, et al. 2014. Temsirolimus attenuates tauopathy in vitro and in vivo by targeting tau hyperphosphorylation and autophagic clearance. Neuropharmacology 85: 121–130. https://doi.org/10.1016/j.neuropharm.2014.05.032.

    Article  PubMed  CAS  Google Scholar 

  13. Jiang, T., Y.D. Zhang, Q. Chen, Q. Gao, X.C. Zhu, J.S. Zhou, J.Q. Shi, H. Lu, L. Tan, and J.T. Yu. 2016. TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology 105: 196–206. https://doi.org/10.1016/j.neuropharm.2016.01.028.

    Article  PubMed  CAS  Google Scholar 

  14. Jiang, T., Y.D. Zhang, Q. Gao, J.S. Zhou, X.C. Zhu, H. Lu, J.Q. Shi, L. Tan, Q. Chen, and J.T. Yu. 2016. TREM1 facilitates microglial phagocytosis of amyloid beta. Acta Neuropathologica 132 (5): 667–683. https://doi.org/10.1007/s00401-016-1622-5.

    Article  PubMed  CAS  Google Scholar 

  15. Jonsson, T., H. Stefansson, S. Steinberg, I. Jonsdottir, P.V. Jonsson, J. Snaedal, S. Bjornsson, et al. 2013. Variant of TREM2 associated with the risk of Alzheimer’s disease. The New England Journal of Medicine 368 (2): 107–116. https://doi.org/10.1056/NEJMoa1211103.

    Article  PubMed  CAS  Google Scholar 

  16. Khanna, M.R., J. Kovalevich, V.M. Lee, J.Q. Trojanowski, and K.R. Brunden. 2016. Therapeutic strategies for the treatment of tauopathies: hopes and challenges. Alzheimers Dement 12 (10): 1051–1065. https://doi.org/10.1016/j.jalz.2016.06.006.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Klesney-Tait, J., I.R. Turnbull, and M. Colonna. 2006. The TREM receptor family and signal integration. Nature Immunology 7 (12): 1266–1273. https://doi.org/10.1038/ni1411.

    Article  PubMed  CAS  Google Scholar 

  18. Lee, D.C., J. Rizer, M.L. Selenica, P. Reid, C. Kraft, A. Johnson, L. Blair, M.N. Gordon, C.A. Dickey, and D. Morgan. 2010. LPS- induced inflammation exacerbates phospho-tau pathology in rTg4510 mice. Journal of Neuroinflammation 7: 56. https://doi.org/10.1186/1742-2094-7-56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lee, M., E. McGeer, and P.L. McGeer. 2015. Activated human microglia stimulate neuroblastoma cells to upregulate production of beta amyloid protein and tau: implications for Alzheimer’s disease pathogenesis. Neurobiology of Aging 36 (1): 42–52. https://doi.org/10.1016/j.neurobiolaging.2014.07.024.

    Article  PubMed  CAS  Google Scholar 

  20. Li, Y., L. Liu, S.W. Barger, and W.S. Griffin. 2003. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. The Journal of Neuroscience 23 (5): 1605–1611.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Liu, S., Y. Liu, W. Hao, L. Wolf, A.J. Kiliaan, B. Penke, C.E. Rube, et al. 2012. TLR2 is a primary receptor for Alzheimer’s amyloid beta peptide to trigger neuroinflammatory activation. Journal of Immunology 188 (3): 1098–1107. https://doi.org/10.4049/jimmunol.1101121.

    Article  CAS  Google Scholar 

  22. Lue, L.F., C.T. Schmitz, G. Serrano, L.I. Sue, T.G. Beach, and D.G. Walker. 2015. TREM2 protein expression changes correlate with Alzheimer’s disease neurodegenerative pathologies in post-mortem temporal cortices. Brain Pathology 25 (4): 469–480. https://doi.org/10.1111/bpa.12190.

    Article  PubMed  CAS  Google Scholar 

  23. Ma, J., T. Jiang, L. Tan, and J.T. Yu. 2015. TYROBP in Alzheimer’s disease. Molecular Neurobiology 51 (2): 820–826. https://doi.org/10.1007/s12035-014-8811-9.

    Article  PubMed  CAS  Google Scholar 

  24. Neumann, H., and M.J. Daly. 2013. Variant TREM2 as risk factor for Alzheimer’s disease. The New England Journal of Medicine 368 (2): 182–184. https://doi.org/10.1056/NEJMe1213157.

    Article  PubMed  CAS  Google Scholar 

  25. Sun, X.Y., Y.P. Wei, Y. Xiong, X.C. Wang, A.J. Xie, X.L. Wang, Y. Yang, et al. 2012. Synaptic released zinc promotes tau hyperphosphorylation by inhibition of protein phosphatase 2A (PP2A). The Journal of Biological Chemistry 287 (14): 11174–11182. https://doi.org/10.1074/jbc.M111.309070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Takahashi, K., M. Prinz, M. Stagi, O. Chechneva, and H. Neumann. 2007. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Medicine 4 (4): e124. https://doi.org/10.1371/journal.pmed.0040124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Takahashi, K., C.D. Rochford, and H. Neumann. 2005. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. The Journal of Experimental Medicine 201 (4): 647–657. https://doi.org/10.1084/jem.20041611.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Yoshiyama, Y., M. Higuchi, B. Zhang, S.M. Huang, N. Iwata, T.C. Saido, J. Maeda, T. Suhara, J.Q. Trojanowski, and V.M. Lee. 2007. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53 (3): 337–351. https://doi.org/10.1016/j.neuron.2007.01.010.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81501092, 81500916), Natural Science Foundation of Jiangsu Province (BK20150091), “Six Talent Summit” Foundation of Jiangsu Province (2016-WSN-180), Youth Medical Talent Program of Jiangsu Province (QNRC2016068, QNRC2016079), Medical Innovation Team of Jiangsu Province (CXTDA2017030), and Nanjing Medical Science and Technology Development Foundation for Distinguished Young Scholars (JQX17008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teng Jiang or Jun-Shan Zhou.

Ethics declarations

All procedures performed in this study involving animals were in accordance with the ethical standards of Nanjing First Hospital.

Conflict of Interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Zhang, YD., Gao, Q. et al. TREM2 Ameliorates Neuronal Tau Pathology Through Suppression of Microglial Inflammatory Response. Inflammation 41, 811–823 (2018). https://doi.org/10.1007/s10753-018-0735-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0735-5

KEY WORDS

Navigation