Skip to main content

Advertisement

Log in

Anti-inflammatory and Anti-oxidative Activities of Paeonol and Its Metabolites Through Blocking MAPK/ERK/p38 Signaling Pathway

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The possible protective and curative effects of paeonol on carrageenan-induced acute hind paw edema in rats and dextran sulfate sodium (DSS)-induced colitis in mice have been evaluated. After oral administration, paeonol (20 and 40 mg/kg) reduced the edema increase in paw volumes and also the development of DSS-induced murine colitis. Furthermore, anti-inflammatory and anti-oxidant activities of paeonol (1) together with its 10 metabolites (M2~M11) were investigated by using in vitro anti-inflammatory and anti-oxidant assays. M3 and M11 exhibited significant 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities (with EC50 values of 93.44 and 23.24 μM, respectively). All the metabolites except M8 showed hydroxyl radical scavenging activities, and M3 and M11 were the most potent agents (with EC50 values of 336.02 and 124.05 μM, respectively). Inhibitory effects of paeonol, M2~M11 on the overproduction of nitric oxide (NO), and the release of TNF-α were also tested. M3 and M11 potently inhibited lipopolysaccharide (LPS)-induced overproduction of NO in macrophage RAW 264.7. Western blot results demonstrated that paeonol, M3, and M11 downregulated the high expression of inducible nitric oxide synthase (iNOS) and COX-2 proteins, and the effects of M3 and M11 were more potent when compared with paeonol. These findings indicated that paeonol may play anti-inflammatory and anti-oxidant roles by changing to its active metabolites after absorption. In addition, further investigations on the mechanism showed that paeonol, M3, and M11 blocked the phosphorylation of MAPK/ERK 1/2 and p38, whereas they showed no effect on the phosphorylation of JNK. The above results suggested that pre-treatment with paeonol might be an effective therapeutic intervention against inflammatory diseases including colitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chou, T.C. 2003. Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia. British Journal of Pharmacology 139: 1146–1152.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Hong, M.H., J.H. Kim, S.H. Na, H. Bae, Y.C. Shin, S.H. Kim, and S.G. Ko. 2010. Inhibitory effects of Paeonia suffruticosa on allergic reactions by inhibiting the NF-kappaB/I kappaB-alpha signaling pathway and phosphorylation of ERK in an animal model and human mast cells. Bioscience Biotechnology and Biochemistry 74: 1152–1156.

    Article  CAS  Google Scholar 

  3. Zhang, L.H., P.G. Xiao, and Y. Huang. 1996. Recent progresses in pharmacological and clinical studies of paeonol. Zhongguo Zhong Xi Yi Jie He Za Zhi 16: 187–190.

    CAS  PubMed  Google Scholar 

  4. Lin, H.C., H.Y. Ding, F.N. Ko, C.M. Teng, and Y.C. Wu. 1999. Aggregation inhibitory activity of minor acetophenones from Paeonia species. Planta Medica 65: 595–599.

    Article  CAS  PubMed  Google Scholar 

  5. Hirai, A., T. Terano, T. Hamazaki, J. Sajiki, H. Saito, K. Tahara, Y. Tamura, and A. Kumagai. 1983. Studies on the mechanism of antiaggregatory effect of Moutan Cortex. Thrombosis Research 31: 29–40.

    Article  CAS  PubMed  Google Scholar 

  6. Ding, H.Y., T.H. Chou, R.J. Lin, L.P. Chan, G.H. Wang, and C.H. Liang. 2011. Antioxidant and antimelanogenic behaviors of Paeonia suffruticosa. Plant Foods for Human Nutrition 66: 275–284.

    Article  CAS  PubMed  Google Scholar 

  7. Bao, M.H., Y.W. Zhang, and H.H. Zhou. 2013. Paeonol suppresses oxidized low-density lipoprotein induced endothelial cell apoptosis via activation of LOX-1/p38MAPK/NF-κB pathway. Journal of Ethnopharmacology 146: 543–551.

    Article  CAS  PubMed  Google Scholar 

  8. Li, H., M. Dai, and W. Jia. 2009. Paeonol attenuates high-fat-diet-induced atherosclerosis in rabbits by anti-inflammatory activity. Planta Medica 75: 7–11.

    Article  CAS  PubMed  Google Scholar 

  9. Tsai, H.Y., H.Y. Lin, Y.C. Fong, J.B. Wu, Y.F. Chen, M. Tsuzuki, and C.H. Tang. 2008. Paeonol inhibits RANKL-induced osteoclastogenesis by inhibiting ERK, p38 and NF-κB pathway. European Journal of Pharmacology 588: 124–133.

    Article  CAS  PubMed  Google Scholar 

  10. Xie, Y., H. Zhou, Y.F. Wong, H.X. Xu, Z.H. Jiang, and L. Liu. 2008. Study on the pharmacokinetics and metabolism of paeonol in rats treated with pure paeonol and an herbal preparation containing paeonol by using HPLC–DAD-MS method. Journal of Pharmaceutical and Biomedical Analysis 46: 748–756.

    Article  CAS  PubMed  Google Scholar 

  11. Ding, L., Z. Liu, F. Zhao, G. Bai, L. Chen, X. Yao, and F. Qiu. 2012. Isolation and identification of the metabolites of paeonol in human urine. Xenobiotica 42: 1206–1212.

    Article  CAS  PubMed  Google Scholar 

  12. Niu, X., Q. Mu, W. Li, H. Yao, H. Li, and H. Huang. 2014. Esculentic acid, a novel and selective COX-2 inhibitor with anti-inflammatory effect in vivo and in vitro. European Journal of Pharmacology 740: 532–538.

    Article  CAS  PubMed  Google Scholar 

  13. Ohkawara, T., H. Takeda, K. Kato, K. Miyashita, M. Kato, T. Iwanaga, and M. Asaka. 2005. Polaprezinc (N-(3-aminopropionyl)-L-histidinato zinc) ameliorates dextran sulfate sodium-induced colitis in mice, Scand. Journal of Gastroenterology 40: 1321–1327.

    CAS  Google Scholar 

  14. Denizot, F., and R. Lang. 1986. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods 89: 271–277.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, F., L. Wang, and K. Liu. 2009. In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibiton on iNOS pathway. Journal of Ethnopharmacology 122: 457–462.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, F., H. Xu, E.Q. He, Y.T. Jiang, and K. Liu. 2008. Inhibitory effects of sesquiterpenes from Saussurea lappa on the overproduction of nitric oxide and TNF-α release in LPS-activated macrophages. Journal of Asian Natural Products Research 10: 1045–1053.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, F., L. Chen, C. Bi, M. Zhang, W. Jiao, and X. Yao. 2013. In vitro anti-inflammatory effect of picrasmalignan A by the inhibition of iNOS and COX-2 expression in LPS-activated macrophage RAW 264.7 cells. Molecular Medicine Reports 8: 1575–1579.

    CAS  PubMed  Google Scholar 

  18. Chan, E.D., and D.W. Riches. 1998. Potential role of the JNK/SAPK signal transduction pathway in the induction of iNOS by TNF-α. Biochemical and Biophysical Research Communications 253: 790–796.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, S.H., J. Kim, and R.P. Sharma. 2004. Inhibition of p38 and ERK MAP kinases blocks endotoxin-induced nitric oxide production and differentially modulates cytokine expression. Pharmacological Research 49: 433–439.

    Article  CAS  PubMed  Google Scholar 

  20. Kaminska, B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta 1754: 253–262.

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura, M., and S.H. Ferreira. 1987. A peripheral sympathetic component in inflammatory hyperalgesia. European Journal of Pharmacology 135: 145–153.

    Article  CAS  PubMed  Google Scholar 

  22. Ferreira, S.H., B.B. Lorenzetti, and S. Poole. 1993. Bradykinin initiates cytokine mediated inflammatory hyperalgesia. British Journal of Pharmacology 110: 1227–1231.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Jung, H.W., C.H. Yoon, K.M. Park, H.S. Han, and Y.K. Park. 2009. Hexane fraction of zingiberis rhizoma crudus extract inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated BV2 microglial cells via the NF-kappaB pathway. Food and Chemical Toxicology 47: 1190–1197.

    Article  CAS  PubMed  Google Scholar 

  24. Kim, K.N., Y.J. Ko, M.C. Kang, H.M. Yang, S.W. Roh, T. Oda, Y.J. Jeon, W.K. Jung, S.J. Heo, W.J. Yoon, and D. Kim. 2013. Anti-inflammatory effects of trans-1, 3-diphenyl-2, 3-epoxypropane-1-one mediated by suppression of inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Food and Chemical Toxicology 53: 371–375.

    Article  CAS  PubMed  Google Scholar 

  25. Yoon, W.J., S.J. Heo, S.C. Han, H.J. Lee, G.J. Kang, H.K. Kang, J.W. Hyun, Y.S. Koh, and E.S. Yoo. 2012. Anti-inflammatory effect of sargachromanol G isolated from Sargassum siliquastrum in RAW 264.7 cells. Archives of Pharmacal Research 35: 1421–1430.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, and the Taishan Scholar Project to Fenghua Fu, and the Scientific and Technological Project of Yantai City, as well as by the Undergraduate Scientific and Technological Innovation Project of Yantai University.

Conflict of interest

The authors report no conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Wang, J., Xia, ZM. et al. Anti-inflammatory and Anti-oxidative Activities of Paeonol and Its Metabolites Through Blocking MAPK/ERK/p38 Signaling Pathway. Inflammation 39, 434–446 (2016). https://doi.org/10.1007/s10753-015-0265-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0265-3

KEY WORDS

Navigation