Skip to main content

Advertisement

Log in

Treatment of CIA Mice with FGF21 Down-regulates TH17-IL-17 Axis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Recently, FGF21 was reported to play an important role in anti-inflammation. The aim of the study is to explore the mechanism for FGF21 alleviating inflammation of CIA. CIA mice were injected with FGF21 once a day for 28 days after first booster immunization. The results showed that FGF21 alleviates arthritis severity and decreases serum anti-CII antibodies levels in CIA mice. Compared with CIA model, the number of the splenic TH17 cells was significantly decreased in FGF21-treated mice. FGF21 treatment reduced the mRNA expression of IL-17, TNF-α, IL-1β, IL-6, IL-8, and MMP3 and increased level of IL-10 in the spleen tissue. The expression of STAT3 and phosphorylated STAT3 was suppressed in FGF21-treated group. The mRNA expression of RORγt and IL-23 also decreased. In conclusion, these findings suggest that the beneficial effects of FGF21 on CIA mice were achieved by down-regulating Th17-IL-17 axis through STAT3/RORγt pathway. Modulating of Th17-mediated inflammatory response may be one of the mechanisms for FGF21 attenuating inflammation in CIA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choy, E. 2012. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 51(Suppl 5): v3–11.

    Article  CAS  Google Scholar 

  2. Williams, R.O., M. Feldmann, and R.N. Maini. 2000. Cartilage destruction and bone erosion in arthritis: the role of tumour necrosis factor alpha. Annals of the Rheumatic Diseases 59: i75–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Durie, F.H., R.A. Fava, and R.J. Noelle. 1994. Collagen-induced arthritis as a model of rheu matoid arthritis. Clinical Immunology and Immunopathology 73(1): 11–8.

    Article  CAS  PubMed  Google Scholar 

  4. Bettelli, E., T. Korn, M. Oukka, and V.K. Kuchroo. 2008. Induction and effector functions of T(H)17 cells. Nature 453(7198): 1051–7.

    Article  CAS  PubMed  Google Scholar 

  5. Park, H., Z. Li, and X.O. Yangetal. 2005. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunology 6(11): 1133–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Korn, T., E. Bettelli, and M. Oukka. 2009. IL-17 and Th17 cells. Annual Review of Immunology 27: 485–517.

    Article  CAS  PubMed  Google Scholar 

  7. Sato, K., A. Suematsu, K. Okamoto, A. Yamaguchi, Y. Morishita, Y. Kadono, et al. 2008. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. Rheumatol 35(3): 515–9.

    Google Scholar 

  8. Harrington, L.E., R.D. Hatton, and P.R. Manganetal. 2005. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinc from the T helper type 1 and 2 lineages. Nature Immunology 6(11): 1123–32.

    Article  CAS  PubMed  Google Scholar 

  9. Stamp, L.K., M.J. James, and L.G. Cleland. 2004. Interleukin-17: the missing link between T-cell accumulation and effector cell actions in rheumatoid arthritis. Immunology and Cell Biology 82(1): 1–9.

    Article  CAS  PubMed  Google Scholar 

  10. Nakae, S., A. Nambu, K. Sudo, and Y. Iwakura. 2003. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. Journal of Immunology 171: 6173–7.

    Article  CAS  Google Scholar 

  11. Nakae, S., S. Saijo, R. Horai, K. Sudo, S. Mori, and Y. Iwakura. 2003. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proceedings of the National Academy of Sciences of the United States of America 100: 5986–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zhao, Y., J.D. Dunbar, and A. Kharitonenkov. 2012. FGF21 as a therapeutic reagent (J). Advances in Experimental Medicine and Biology 728: 214–8.

    Article  CAS  PubMed  Google Scholar 

  13. Kharitonenkov, A., V.J. Wroblewski, A. Koester, Y.F. Chen, C.K. Clutinger, X.T. Tigno, et al. 2007. The metabolic state of diabetic monkeys is regulated by FGF-21. Endocrinology 148(2): 774–81.

    Article  CAS  PubMed  Google Scholar 

  14. Coskun, T., H.A. Bina, M.A. Schneider, J.D. Dunbar, C.C. Hu, Y. Chen, et al. 2008. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149: 6018–27.

    Article  CAS  PubMed  Google Scholar 

  15. Lee, M.S., S.E. Choi, E.S. Ha, S.Y. An, T.H. Kim, S.J. Han, et al. 2012. Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-κB. Metabolism 61(8): 1142–51.

    Article  CAS  PubMed  Google Scholar 

  16. Gariani, K., G. Drifte, I. Dunn-Siegrist, J. Pugin, and F.R. Jornayvaz. 2013. Increased FGF21 plasma levels in humans with sepsis and SIRS. Endocrine Connections 2(3): 146–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hulejová, H., L. Andrés Cerezo, M. Kuklová, O. Pecha, T. Vondráček, K. Pavelka, et al. 2012. Novel adipokine fibroblast growth factor 21 is increased in rheumatoid arthritis. Physiological Research 61: 489–94.

    PubMed  Google Scholar 

  18. Yinhang, Yu., Li. Siming, Liu Yaonan, Tian Guiyou, Yuan Qingyan, et al. 2015. Fibroblast growth factor 21 (FGF21) ameliorates collagen-induced arthritis through modulating oxidative stress and suppressing nuclear factor-kappaβ pathway. International Immunopharmacology 25: 74–82.

    Article  Google Scholar 

  19. Barnett, M.L., J.M. Kremer, E.W. St Clair, D.O. Clegg, D. Furst, M. Weisman, et al. 1998. Treatment of rheumatoid arthritis with oral type II collagen. Results of a multicenter, double-blind, placebo-controlled trial. Arthritis and Rheumatism 41(2): 290–7.

    Article  CAS  PubMed  Google Scholar 

  20. Bevaart, L., M.J. Vervoordeldonk, and P.P. Tak. 2010. Collagen-induced arthritis in mice. Methods in Molecular Biology 602: 181–92.

    Article  PubMed  Google Scholar 

  21. Lubberts, E., M.I. Koenders, and W.B. van den Berg. 2005. The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Research and Therapy 7: 29–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Chabaud, M., E. Lubberts, L. Joosten, W. van Den Berg, and P. Miossec. 2001. IL-17 derived from juxta-articular bone andsynovium contributes to joint degradation in rheumatoid arthritis. Arthritis Research 3: 168–177.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lubberts, E., L.A. Joosten, B. Oppers, L. van den Bersselaar, C.J. Coenen-de Roo, J.K. Kolls, et al. 2001. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. Journal of Immunology 167(2): 1004–13.

    Article  CAS  Google Scholar 

  24. Hwang, S.Y., and H.Y. Kim. 2005. Expression of IL-17 homologs and their receptors in the synovialcells of rheumatoid arthritis patients. Molecules and Cells 19(2): 180–4.

    CAS  PubMed  Google Scholar 

  25. Kotake, S., N. Udagawa, N. Takahashi, K. Matsuzaki, K. Itoh, S. Ishiyama, et al. 1999. IL-17 in synovialfluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. Journal of Clinical Investigation 103(9): 1345–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Jovanovic, D.V., J.A. Di Battista, J. Martel-Pelletier, F.C. Jolicoeur, Y. He, M. Zhang, et al. 1998. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-βand TNF-α, by human. Macrophages The Journal of Immunology 160(7): 3513–21.

    CAS  PubMed  Google Scholar 

  27. Katz, Y., O. Nadiv, and Y. Beer. 2001. Interleukin-17 enhances tumor necrosis factor-induced synthesis of interleukins 1, 6, and 8 in skin and IL-17 in rheumatoid arthritis in skin and synovial fibroblasts: a possible role as a “fine-tuning cytokine” in inflammation processes. Arthritis and Rheumatism 44: 2176–84.

    Article  CAS  PubMed  Google Scholar 

  28. Beklen, A., M. Ainola, M. Hukkanen, C. Gürgan, T. Sorsa, and Y.T. Konttinen. 2007. MMPs, IL-1, and TNF are regulated by IL-17 in periodontitis. Journal of Dental Research 86(4): 347–51.

    Article  CAS  PubMed  Google Scholar 

  29. LeGrand, A., B. Fermor, C. Fink, D.S. Pisetsky, J.B. Weinberg, T.P. Vail, et al. 2001. Interleukin-1, tumor necrosis factor, and interleukin-17 synergistically up-regulate nitric oxide and prostaglandin E production in explants of human osteoarthritic knee menisci. Arthritis and Rheumatism 44: 2078–83.

    Article  CAS  PubMed  Google Scholar 

  30. Jones, C.E., and K. Chan. 2002. Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-alpha, and granulocyte-colony-stimulating factor by human airway epithelial cells. American Journal of Respiratory Cell and Molecular Biology 2(6): 748–53.

    Article  Google Scholar 

  31. Fossiez, F., O. Djossou, P. Chomarat, L. Flores-Romo, S. Ait-Yahia, C. Maat, et al. 1996. T cell interleukin-17 induceomal cells to produce pro-inflammatory and hematopoietic cytokines. Journal of Experimental Medicine 183(6): 2593–603.

    Article  CAS  PubMed  Google Scholar 

  32. Agarwal, S., R. Misra, and A. Aggarwal. 2008. Interleukin 17 levels are increased in juvenile idiopathic arthritis synovial fluid and induce synovial fibroblasts to produce proinflammatory cytokines and matrix metalloproteinases. Rheumatol 35(3): 515–9.

    CAS  Google Scholar 

  33. Miossec, Pierre. 2003. Interleukin-17 in rheumatoid arthritis. Arthritis and Rheumatism 48(3): 594–601.

    Article  CAS  PubMed  Google Scholar 

  34. Ooi, J.D., R.K. Phoon, S.R. Holdsworth, and A.R. Kitching. 2009. IL-23, not IL-12, directs autoimmunity to the good pasture antigen. Journal of the American Society of Nephrology 20(5): 980–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Krause, A., N. Scaletta, J.D. Ji, and L.B. Ivashkiv. 2002. Rheumatoid arthritis synoviocyte survival is dependent on Stat3. Journal of Immunology 169: 6610–6.

    Article  CAS  Google Scholar 

  36. Harris, T.J., J.F. Grosso, and H.R. Yen. 2007. Cutting edge: an in vivo requirement for STAT3 signaling in T17 development and 17-dependent autoimmunity. Journal of Immunology 179(7): 4313–7.

    Article  CAS  Google Scholar 

  37. Yang, X.O., A.D. Panopoulos, R. Nurieva, S.H. Chang, D. Wang, S.S. Watowich, et al. 2007. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. Journal of Biological Chemistry 282(13): 9358–63.

    Article  CAS  PubMed  Google Scholar 

  38. Ivaylo, I.I., B.S. McKenzie, L. Zhou, C.E. Tadokoro, A. Lepelley, J.J. Lafaille, et al. 2006. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17 + T helper cells. Cell 126(6): 1121–33.

    Article  Google Scholar 

  39. Nicolas, Manel, Unutmaz Derya, and Dan R. Littman. 2008. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nature Immunology 9(6): 641–9.

    Article  Google Scholar 

  40. Langrish, Claire L., Yi. Chen, Wendy M. Blumenschein, Jeanine Mattson, Beth Basham, et al. 2005. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. Journal of Experimental Medicine 201(2): 233–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Cho, M.L., J.W. Kang, Y.M. Moon, H.J. Nam, J.Y. Jhun, S.B. Heo, et al. 2006. STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptorantagonist-deficient mice. Journal of immunology (Baltimore, Md:1950) 176(9): 5652–6.

    Article  CAS  Google Scholar 

  42. Zhou, L., I.I. Ivanov, and R. Spolski. 2007. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature Immunology 8: 967–74.

    Article  CAS  PubMed  Google Scholar 

  43. Putoczki, T.L., S. Thiem, A. Loving, et al. 2013. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 24(2): 257–71.

    Article  CAS  PubMed  Google Scholar 

  44. Grivennikov, S.I. 2013. IL-11: a prominent pro-tumorigenic member of the IL-6 family. Cancer Cell 24(2): 145–7.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, L., T. Yi, M. Kortylewski, et al. 2009. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. Journal of Experimental Medicine 206(7): 1457–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Jarnicki, A., T. Putoczki, and M. Ernst. 2010. Stat3: linking inflammation to epithelial cancer—more than a “gut” feeling? Cell Div 5: 14.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Sironi, M., F. Breviario, P. Proserpio, et al. 1989. IL-1 stimulates IL-6 production in endothelial cells. Journal of Immunology 142(2): 549–53.

    CAS  Google Scholar 

  48. Kaplanski, G., N. Teysseire, C. Farnarier, et al. 1995. IL-6 and IL-8 production from cultured human endothelial cells stimulated by infection with Rickettsia conorii via a cell-associated IL-1 alpha-dependent pathway. Journal of Clinical Investigation 96(6): 2839–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. He, G., and M. Karin. 2011. NF-kappaB and STAT3—key players in liver inflammation and cancer. Cell Research 21(1): 159–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Bollrath, J., and F.R. Greten. 2009. IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Reports 10(12): 1314–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by The Scientific Research Foundation of Harbin University of Commerce for PhD (NO.92508177) and The National Natural Science Fund biologic science base improve program of research training and capacity (NO. J1210069/J0131)

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si-ming Li or De-shan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Sm., Yu, Yh., Li, L. et al. Treatment of CIA Mice with FGF21 Down-regulates TH17-IL-17 Axis. Inflammation 39, 309–319 (2016). https://doi.org/10.1007/s10753-015-0251-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0251-9

KEY WORDS

Navigation