Skip to main content

Advertisement

Log in

Suppressive Effects of N-Acetyl-d-Glucosamine on Rheumatoid Arthritis Mouse Models

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

We examined effects of N-acetyl-d-glucosamine (GlcNAc) on rheumatoid arthritis (RA) mouse models and effects of GlcNAc and glucosamine hydrochloride (GlcN) on several serum cytokine productions in RA mouse models. SKG/jcl mice were divided into control, GlcNAc, and GlcN groups. For 56 days, the control group received normal food, the GlcNAc group received 0.5 % GlcNAc-containing food, and the GlcN group received 0.5 % GlcN-containing food. GlcNAc and GlcN equally suppressed arthritis scores and histopathological scores compared to the control group. In the GlcN group, serum tumor necrosis factor-α and interleukin (IL)-6 concentrations were significantly decreased compared to the control group. In the GlcNAc group, serum IL-10, transforming growth factor β-1, and IL-2 concentrations were significantly increased compared to the control group. Our results indicated that GlcNAc also has suppressive effects on experimental RA in mouse models. The results of serum cytokine concentrations suggested that compared to GlcN, GlcNAc has a different suppressive mechanism in experimental RA models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anderson, J.W., R.J. Nicolosi, and J.F. Borzelleca. 2005. Glucosamine effects in humans: a review of effects on glucose metabolism, side effects, safety considerations and efficacy. Food and Chemical Toxicology 43(2): 187–201.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, J.K., C.R. Shen, and C.L. Liu. 2010. N-Acetylglucosamine: production and applications. Marine Drugs 8(9): 2493–2516.

    Article  PubMed  CAS  Google Scholar 

  3. Shikhman, A.R., D.C. Brinson, J. Valbracht, and M.K. Lotz. 2009. Differential metabolic effects of glucosamine and N-acetylglucosamine in human articular chondrocytes. Osteoarthritis and Cartilage 17(8): 1022–1028.

    Article  PubMed  CAS  Google Scholar 

  4. Hua, J., K. Sakamoto, T. Kikukawa, C. Abe, H. Kurosawa, and I. Nagaoka. 2007. Evaluation of the suppressive actions of glucosamine on the interleukin-1beta-mediated activation of synoviocytes. Inflammation Research 56(10): 432–438.

    Article  PubMed  CAS  Google Scholar 

  5. Ngian, G.S. 2010. Rheumatoid arthritis. Australian Family Physician 39(9): 626–628.

    PubMed  Google Scholar 

  6. Hua, J., S. Suguro, S. Hirano, K. Sakamoto, and I. Nagaoka. 2005. Preventive actions of a high dose of glucosamine on adjuvant arthritis in rats. Inflammation Research 54(3): 127–132.

    Article  PubMed  CAS  Google Scholar 

  7. Sakaguchi, N., T. Takahashi, H. Hata, T. Nomura, T. Tagami, S. Yamazaki, T. Sakihama, T. Matsutani, I. Negishi, S. Nakatsuru, and S. Sakaguchi. 2003. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426(6965): 454–460.

    Article  PubMed  CAS  Google Scholar 

  8. Hata, H., N. Sakaguchi, H. Yoshitomi, Y. Iwakura, K. Sekikawa, Y. Azuma, C. Kanai, E. Moriizumi, T. Nomura, T. Nakamura, and S. Sakaguchi. 2004. Distinct contribution of IL-6, TNF-alpha, IL-1, and IL-10 to T cell-mediated spontaneous autoimmune arthritis in mice. Journal of Clinical Investigation 114(4): 582–588.

    PubMed  CAS  Google Scholar 

  9. Yoshitomi, H., N. Sakaguchi, K. Kobayashi, G.D. Brown, T. Tagami, T. Sakihama, et al. 2005. A role for fungal {beta}-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. The Journal of Experimental Medicine 201(6): 949–960.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, E.K., S.M. Kang, D.J. Paik, J.M. Kim, and J. Youn. 2005. Essential roles of Toll-like receptor-4 signaling in arthritis induced by type II collagen antibody and LPS. International Immunology 17(3): 325–333.

    Article  PubMed  CAS  Google Scholar 

  11. Hawkey, C., A. Kahan, K. Steinbrück, C. Alegre, E. Baumelou, B. Bégaud, et al. 1998. Gastrointestinal tolerability of meloxicam compared to diclofenac in osteoarthritis patients. International MELISSA Study Group. Meloxicam Large-scale International Study Safety Assessment. British Journal of Rheumatology 37(10): 937–945.

    Article  PubMed  CAS  Google Scholar 

  12. Bianchi, A., Bécuwe, P., Dauça, M., Netter, P., Magdalou, J., Terlain, B., and Bordji, K. 2002. Glucosamine modulates IL-1-induced activation of rat chondrocytes at a receptor level, and by inhibiting the NF-κB pathway. FEBS Letters 510(3): 166–170.

    Google Scholar 

  13. Sakaguchi, S., M. Ono, R. Setoguchi, H. Yagi, S. Hori, Z. Fehervari, J. Shimizu, T. Takahashi, and T. Nomura. 2006. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunology Reviews 212: 8–27.

    Article  CAS  Google Scholar 

  14. Nistala, K., and L.R. Wedderburn. 2009. Th17 and regulatory T cells: rebalancing pro- and anti-inflammatory forces in autoimmune arthritis. Rheumatology (Oxford, England) 48(6): 602–606.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Yaizu SuisannKagaku Industry Co. Ltd. (Shizuoka, Japan) and Koyo Chemical Co. Ltd. (Tokyo, Japan) for providing the test material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Osaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azuma, K., Osaki, T., Wakuda, T. et al. Suppressive Effects of N-Acetyl-d-Glucosamine on Rheumatoid Arthritis Mouse Models. Inflammation 35, 1462–1465 (2012). https://doi.org/10.1007/s10753-012-9459-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9459-0

KEY WORDS

Navigation