Skip to main content

Advertisement

Log in

Experimental Periodontitis Induces a cAMP-dependent Increase in Amylase Activity in Parotid Glands from Male Rats

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

It is known that subjects with periodontitis show enhanced amylase concentration in saliva. Our purpose was to analyze the release of amylase in parotid glands from rats with experimental periodontitis and controls. We present evidence that periodontitis induces an increase in resting amylase activity and release without changes in isoproterenol-induced amylase secretion. Changes in amylase were reverted by the inhibition of the adenylyl cyclase by SQ 22536, the cyclooxygenase type 1 by FR 122047 and by blocking the vasoactive intestinal peptide (VIP) receptor with VIP 6–28. Parotid glands from rats with periodontitis showed an increase in cAMP levels that was also reverted in the presence of SQ 22536, FR 122047 and VIP 6–28. We concluded that both PGE2 and VIP are produced in parotid glands from rats with periodontitis and, by activating their own receptors in acinar cells, induce cAMP accumulation leading to an increase in amylase basal secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aguirre, A., L. A. Testa-Weintraub, J. A. Banderas, R. Dunford, and M. J. Levine. 1992. Levels of salivary cystatins in periodontal healthy and diseased older adults. Arch. Oral Biol. 37:355–361.

    Article  CAS  PubMed  Google Scholar 

  2. Ann, D. K., S. Clements, E. M. Johnstone, and D. M. Carlson. 1987. Induction of tissue-specific proline-rich protein multigene families in rat and mouse parotid glands by isoproterenol. Unusual strain differences of proline-rich protein mRNAs. J. Biol. Chem. 262:899–904.

    CAS  PubMed  Google Scholar 

  3. Bedi, G. S. 1993. The effect of adrenergic agonists and antagonists on the expression of proteins in rat submandibular and parotid glands. Crit. Rev. Oral. Biol. Med. 4:565–571.

    CAS  PubMed  Google Scholar 

  4. Bernfeld, P. 1951. Enzymes of starch degradation and synthesis. Adv. Enzymol. 1:149–158.

    Article  Google Scholar 

  5. Busch, L., L. Sterin Borda, and E. Borda. 2008. β-adrenoceptor alterations coupled with secretory response and experimental periodontitis, in rat submandibular glands. Arch. Oral Biol. 53:509–516.

    Article  CAS  PubMed  Google Scholar 

  6. Castle, A. M., A. Y. Huang, and J. D. Castle. 2002. The minor regulated pathway, a rapid component of salivary secretion, may provide docking/fusion sites for granule exocytosis at the apical surface of acinar cells. J. Cell. Sci. 115:2963–2973.

    CAS  PubMed  Google Scholar 

  7. Castle, D., and A. Castle. 1998. Intracellular transport and secretion of salivary proteins. Crit. Rev. Oral. Biol. Med. 9:4–22.

    Article  CAS  PubMed  Google Scholar 

  8. Castle, J. D., and A. M. Castle. 1996. Two regulated secretory pathways for newly synthesized parotid salivary proteins are distinguished by doses of secretagogues. J. Cell. Sci. 109:2591–2599.

    CAS  PubMed  Google Scholar 

  9. De La Fuente, M., M. Delgado, and R. P. Gomariz. 1996. VIP modulation of immune cell functions. Adv. Neuroimmunol. 6:75–91.

    Article  Google Scholar 

  10. Fujita-Yoshigaki, J. 1998. Divergence and convergence in regulated exocytosis: the characteristics of cAMP-dependent enzyme secretion of parotid salivary acinar cells. Cell. Signal. 10:371–375.

    Article  CAS  PubMed  Google Scholar 

  11. Gorr, S. U., S. G. Venkatesh, and D. S. Darling. 2005. Parotid secretory granules: crossroads of secretory pathways and protein storage. J. Dent. Res. 84:500–509.

    Article  CAS  PubMed  Google Scholar 

  12. Hata, F., T. Takeuchi, M. Asano, and O. Yagasaki. 1990. Effects of indomethacin and prostaglandin E2 on amylase secretion by rat parotid tissue. Biochem. Pharmacol. 40:390–393.

    Article  CAS  PubMed  Google Scholar 

  13. Henskens, Y. M. C., P. A. M. Van Den Keijbus, E. C. I. Veerman, G. A. Van Der Weijden, M. F. Timmerman, C. M. Snoek, U. Van Der Velden, and A. V. Nieuw Amerongen. 1996. Protein composition of whole and parotid saliva in healthy and periodontitis subjects. Determination of cystatins, albumin, amylase and IgA. J. Periodontal Res. 31:57–65.

    Article  CAS  PubMed  Google Scholar 

  14. Henskens, Y. M. C., U. Vand Der Velden, E. C. I. Veerman, and A. V. Nieuw Amerongen. 1993. Protein, albumin and cystatin concentrations in saliva of healthy subjects and of patients with gingivitis or periodontitis. J. Periodontal Res. 28:43–48.

    Article  CAS  PubMed  Google Scholar 

  15. Huang, A. Y., A. M. Castle, B. T. Hinton, and J. D. Castle. 2001. Resting (basal) secretion of proteins is provided by the minor regulated and constitutive-like pathways and not granule exocytosis in parotid acinar cells. J. Biol. Chem. 276:22296–22306.

    Article  CAS  PubMed  Google Scholar 

  16. Inoue, Y., K. Kaku, T. Kaneko, N. Yanaihara, and T. Kanno. 1985. Vasoactive intestinal peptide binding to specific receptors on rat parotid acinar cells induces amylase secretion accompanied by intracellular accumulation of cyclic adenosine 3′ 5′ monophosphate. Endocrinology. 116:686–692.

    Article  CAS  PubMed  Google Scholar 

  17. Jilling, T., and K. L. Kirk. 1996. Cyclic AMP and chloride-dependent regulation of the apical constitutive secretory pathway in colonic epithelial cells. J. Biol. Chem. 271:4381–4387.

    Article  CAS  PubMed  Google Scholar 

  18. Krause, G., R. Kumar, A. Meyers, and K. N. Prasad. 1996. Effect of adenosine 3′ 5′-cyclic monophosphate (cAMP) on human non-tumorigenic and tumorigenic parotid acinar cells in culture. Cancer Lett. 108:73–79.

    Article  CAS  PubMed  Google Scholar 

  19. Receta, J., C. Martinez, M. Delgado, E. Garrido, and R. P. Gomariz. 1996. Expression of vasoactive intestinal peptide in lymphocytes: a possible endogenous role in the regulation of the immune system. Adv. Neuroimmunol. 6:29–36.

    Article  Google Scholar 

  20. Lundy, F. T., and G. J. Linden. 2004. Neuropeptides and neurogenic mechanisms in oral and periodontal inflammation. Crit. Rev. Oral. Biol. Med. 15:82–98.

    Article  PubMed  Google Scholar 

  21. Mashayekhi, F., F. Aghahoseini, A. Rezaie, M. J. Zamani, R. Khorasani, and M. Abdollahi. 2005. Alteration of cyclic nucleotides levels and oxidative stress in saliva of human subjects with periodontitis. J. Contemp. Dent. Pract. 6:46–53.

    PubMed  Google Scholar 

  22. Muñiz, M., M. Alonso, J. Hidalgo, and A. Velasco. 1996. A regulatory role for cAMP-dependent protein kinase in protein traffic along the exocytic route. J. Biol. Chem. 271:30935–30941.

    Article  PubMed  Google Scholar 

  23. Narumiya, S., Y. Sugimoto, and F. Ushkubi. 1999. Prostanoid receptors: structures, properties and functions. Physiol. Rev. 79:1193–1226.

    CAS  PubMed  Google Scholar 

  24. Ohshima, K., K. Takada, and A. Tsujimoto. 1987. Prostaglandins synthesis by murine salivary glands. Arch. Oral Biol. 32:751–753.

    Article  CAS  PubMed  Google Scholar 

  25. Scott, J., and B. J. Baum. 1985. Involvement of cyclic AMP and calcium in exocrine protein secretion induced by vasoactive intestinal polypeptide in rat parotid cells. Biochim. Biophys. Acta. 847:255–262.

    Article  CAS  PubMed  Google Scholar 

  26. Shern, R. J., P. C. Fox, and S. H. Li. 1993. Influence of age on secretory rates of the human minor salivary glands and whole saliva. Arch. Oral Biol. 38:755–761.

    Article  CAS  PubMed  Google Scholar 

  27. Sreebny, L. M., D. A. Johnson, and M. R. Robinovitch. 1971. Functional regulation of protein synthesis in the rat parotid gland. J. Biol. Chem. 246:3879–3884.

    CAS  PubMed  Google Scholar 

  28. Zhong, Y., G. D. Slade, J. D. Beck, and S. Offenbacher. 2007. Gingival crevicular fluid interleukin-1beta, prostaglandin E2 and periodontal status in a community population. J. Clin. Periodontol. 34:285–293.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant from University of Buenos Aires (UBACYT O 401). We thank Mrs. Elvita Vannucchi and Mrs. Elena Vernet for their outstanding technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucila Busch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miozza, V., Borda, E., Sterin-Borda, L. et al. Experimental Periodontitis Induces a cAMP-dependent Increase in Amylase Activity in Parotid Glands from Male Rats. Inflammation 32, 357–363 (2009). https://doi.org/10.1007/s10753-009-9142-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-009-9142-2

KEY WORDS

Navigation