Skip to main content

Advertisement

Log in

INitial Steps of Insulin Action in Parotid Glands of Male Wistar Rats

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The parotid gland is the largest salivary gland. It produces watery saliva, rich in proteins (amylase, lysozymes, and antibodies). Due to the gland’s morphological cytoarchitecture composed of only serous acini, it contributes almost 50% of total salivary volume upon stimulation. It has been reported that the prevalence of saliva secretion impairments, periodontitis, delayed wound healing, and xerostomia increase in diabetic patients. Herein we evaluated the acute effects of insulin on insulin receptor phosphorylation status and its substrates IRS-1 and IRS-2 in the parotid glands of adult male Wistar rats, using Western blot analyses. We confirmed an acute effect of insulin on IR/IRS/PI3K/Akt and MAPK intracellular pathway activation in the parotid glands of male Wistar rats similar to the classical metabolic targets of the hormone, like the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. White, M. F., Shoelson, S. E., Keutmann, H., & Kahn, C. R. (1988). A cascade of tyrosine autophosphorylation in the beta-subunit activates the phosphotransferase of the insulin receptor. Journal of Biological Chemistry, 263(6), 2969–2980.

    Article  CAS  Google Scholar 

  2. Cheatham, B., & Kahn, C. R. (1995). Insulin action and the insulin-signaling network. Endocrine Review, 16, 117–142.

    CAS  Google Scholar 

  3. Cuatrecasas, P. (1969). Interaction of insulin with the cell membrane: the primary action of insulin. Biochem, 63, 450–457.

    CAS  Google Scholar 

  4. Cuatrecasas, P. (1972). Affinity chromatography and purification of the insulin receptor of liver cell membranes. Proceedings of the National Academy of Sciences of the United States of America, 69, 1277–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Freychet, P., Roth, J., & Neville, D. M. (1971). Monoiodoinsulin: demonstration of its biological activity and binding to fat cells and liver membranes. Biochemical and Biophysical Research Communications, 43(2), 400–408.

    Article  CAS  PubMed  Google Scholar 

  6. Freychet, P., Roth, J., & Neville, D. M. (1971). Insulin receptor in the liver: specific bindidng of [125I] insulin to the plasma membrane and its relation to insulin bioactivity. Proceedings of the National Academy of Sciences of the United States of America, 68, 1833–1837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kahn, C. R. (1985). Molecular mechanism of insulin action. Annual Review of Medicine, 36, 429–451.

    Article  CAS  PubMed  Google Scholar 

  8. Patti, M. E., & Kahn, C. R. (1998). The insulin receptor—a critical link in glucose homeostasis and insulin action. Journal of Basic and Clinical Physiology and Pharmacology, 9, 89–109.

    Article  CAS  PubMed  Google Scholar 

  9. Kasuga, M., Karlsson, F. A., & Kahn, C. R. (1982). Insulin stimulates the phosphorilation of the 95.000 dalton subunit of its own receptor. Science, 215, 185–187.

    Article  CAS  PubMed  Google Scholar 

  10. Ullrich, A., & Schlessinger, J. (1990). Signal transduction by receptors with tyrosine kinase activity. Cell, 61(2), 203–212.

    Article  CAS  PubMed  Google Scholar 

  11. Cahill, G., & FJr (1971). Phisiology of insulin in man. Diabetes, 20, 785–799.

    Article  CAS  PubMed  Google Scholar 

  12. Sun, X. J., Rothenberg, P., Kahn, C. R., Backer, J. M., Araki, E., Wilden, P. A., Cahill, D. A., Goldstein, B. J., & White, M. F. (1991). Structure of the insulin receptor substrate IRS-1 defines a unique signal Transduction protein. Nature, 352, 73–77.

    Article  CAS  PubMed  Google Scholar 

  13. Sun, X. J., Wang, L. M., & Zhang, Y., et al. (1995). The structure and function of 4PS reveals IRS-2: A common interface in insulin and cytokine signaling. Nature, 374, 442–446.

    Google Scholar 

  14. Folli, F., Saad, M. J. A., Backer, J. M., & Kahn, C. R. (1992). Insulin stimulation of phosphatidylinositol 3-kinase and association with insulin receptor substrate 1 in liver and muscle of the intact rat. Journal of Biological Chemistry, 267, 22171–22177.

    Article  CAS  Google Scholar 

  15. Kohn, A. D., Summers, S. A., Birnbaum, M. J., Roth, R. A. (1996). Expression of a constitutively active AKT Ser/Thr Kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. Journal of Biological Chemistry, 6:271(49), 31372–31378.

  16. Tanti, J. F., Grillo, S., Gremeaux, T., Coffer, P. J., Van Ibberghen, E., & Le Marchand-Brustel, Y. (1997). Potential role of protein Kinase B in glucose transporter 4 translocation in adipocytes. Endocrinology, 138(5), 2005–2010.

    Article  CAS  PubMed  Google Scholar 

  17. Krook, A., Roth, R. A., Jiang, X. J., Zierath, J. R., & Wallberg-Henriksson, H. (1998). Insulin-stimulated AKT Kinase activity is reduced in skeletal muscle from NIDDM subjects. Diabetes, 47(8), 1281–1286.

    Article  CAS  PubMed  Google Scholar 

  18. Shepherd, P. R., Nave, B. T., & Siddle, K. (1995). Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3t3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-Kinase and p70 ribosomal protein-S6 kinase. Journal of Biological Chemistry, 305, 25–28.

    CAS  Google Scholar 

  19. Kovacina, K. S., & Roth, R. A. (1993). Identification of shc as a substrate of the insulin receptor Kinase distinct from the GAP-associated 62 kDa tyrosine phosphoprotein. Biochemical and Biophysical Research Communications, 192, 1303–1311.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, L. M., Myers, M. G., Sun, X., Aaronson, S. A., White, M., & Pierce, J. H. (1993). IRS-1: Essential for insulin and IL-4 stimulated mitogenesis in hematopoietic cells. Science, 261, 1591–1594.

    Article  CAS  PubMed  Google Scholar 

  21. Avruch, J. (1998). Insulin signal transduction through protein kinase cascades. Molecular and Cellular Biochemistry, 182(1-2), 31–48.

    Article  CAS  PubMed  Google Scholar 

  22. Boulton, T. G., Nye, S. H., Robbins, D. J., Ip, N. Y., Radziejewska, E., Morgenbesser, S. D., DePinho, R. A., Panayotatos, N., Cobb, M. H., & Yancopoulos, G. D. (1991). ERKs a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell, 65, 663–675.

    Article  CAS  PubMed  Google Scholar 

  23. Bakianian-Vaziri, P., Vahedi, M., Mortazavi, H., Abdollahzadeh, S. H., & Hajilooi, M. (2010). Evaluation of salivary glucose, IgA and flow rate in diabetic patients: a case‐control study. Journal of Dental Medicine - Tehran, 7, 13–18.

    CAS  Google Scholar 

  24. Indira, M., Chandrashekar, P., Kattappagari, K. K., Chandra, L. P., Chitturi, R. T., & BV, R. R. (2015). Evaluation of salivary glucose, amylase, and total protein in type 2 diabetes mellitus patients. Indian Journal of Dental Research, 26, 271–275.

    Article  CAS  PubMed  Google Scholar 

  25. Panchbhai, A. S., Degwekar, S. S., & Bhowte, R. R. (2010). Estimation of salivary glucose, salivary amylase, salivary total protein and salivary flow rate in diabetics in India. Journal of Oral Science, 52, 359–368.

    Article  CAS  PubMed  Google Scholar 

  26. Marín Martínez, L., Molino Pagán, D., & López Jornet, P. (2018). Trace elements in saliva as markers of type 2 diabetes mellitus. Biological Trace Element Research, 186, 354–360.

    Article  PubMed  Google Scholar 

  27. Chen, S. Y., Wang, Y., Zhang, C. L., & Yang, Z. M. (2020). Decreased basal and stimulated salivary parameters by histopathological lesions and secretory dysfunction of parotid and submandibular glands in rats with type 2 diabetes. Experimental and Therapeutic Medicine, 19(4), 2707–2719.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rocha, E. M., Lima, M. H. M., Carvalho, C. R. O., Saad, M. J. A., & Velloso, L. A. (2000). Characterization of the insulin-signaling pathway in lacrimal and salivary glands of rats. Current Eye Research, 21(5), 833–842.

    Article  CAS  PubMed  Google Scholar 

  29. Rocha, E. M., Carvalho, C. R. O., Saad, M. A. J., & Velloso, L. A. (2003). The influence of ageing on the insulin signalling system in rat lacrimal and salivary glands. Acta Ophthalmologica Scandinavica, 81(6), 639–645.

    Article  CAS  PubMed  Google Scholar 

  30. Young, J. A., Van Lennep, D. W. (1978). The morphology of salivary glands. London, New York, Academic Press.

  31. Mason, D. K., Chisholm, D. M. (1975). Salivary glands in health and disease. London, Philadelphia, Saunders.

  32. Mascarenhas, P., Fatela, B., & Barahona, I. (2014). Effect of diabetes mellitus type 2 on salivary glucose-a systematic review and meta-analysis of observational studies. Plos One, 9(7), e101706.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Naseri, R., Mozaffari, H. R., Ramezani, M., & Sadeghi, M. (2018). Effect of diabetes mellitus type 2 on salivary glucose, immunoglobulin A, total protein, and amylase levels in adults: a systematic review and meta-analysis of case-control studies. Journal of Research in Medical Sciences, 23, 89

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pérez-Ros, P., Navarro-Flores, E., Julián-Rochina, I., Martínez-Arnau, F. M., & Cauli, O. (2021). Changes in salivary amylase and glucose in diabetes: a scoping review. Diagnostics, 11(3), 453.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Anderson, L. C., Garrett, J. R., Thulin, A., & Proctor, G. B. (1989). Effects of streptozocin-induced diabetes on sympathetic and parasym-pathetic stimulation of parotid salivary gland function in rats. Diabetes, 38, 1381–1389.

    Article  CAS  PubMed  Google Scholar 

  36. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  37. Copps, K. D., & White, M. F. (2012). Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 55, 2565–2582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clarke, J. F., Young, P. W., Yonezawa, K., Kasuga, M., & Holman, G. D. (1994). Inhibition of the Translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the Phosphatidylinositol 3-Kinase inhibitor, wortmannin. Biochem J, 300(Pt3), 631–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsakiridis, T., McDowell, H. E., Walker, T., Downes, C. P., Hundal, H. S., Vranic, M., & Klip, A. (1995). Multiple roles of phosphatidylinositol 3-kinase in regulation of glucose transport, amino acid transport, and glucose transporters in L6 skeletal muscle cells. Endocrinology, 136(10), 4315–4322.

    Article  CAS  PubMed  Google Scholar 

  40. Sanches-Margalet, V., Goldfine, I. D., Vlahos, C. J., & Sung, C. K. (1994). Role of PI 3-kinase in insulin receptor signaling: studies with inhibitor LY294002. Biochemical and Biophysical Research Communications, 204, 336–LY294452.

    Google Scholar 

  41. Limesand, K. H., Barzen, K. A., Quissel, D. O., & Anderson, S. M. (2003). Synergistic suppression of apoptosis in salivary acinar cells by IGF1 and EGF. Cell Death and Differentiation, 10, 345–355.

    Article  CAS  PubMed  Google Scholar 

  42. Hoseini, A., Mirzapour, A., Bijani, A., & Shirzad, A. (2017). Salivary flow rate and xerostomia in patients with type I and II diabetes mellitus. Electron Physician, 9(9), 5244–5249.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Newrick, P. G., Bowman, C., Green, D., O’Brien, I. A., Porter, S. R., Scully, C., & Corrall, R. J. (1991). Parotid salivary secretion in diabetic autonomic neuropathy. Journal of Diabetic Complications, 5(1), 35–37.

    Article  CAS  Google Scholar 

  44. Mata, A. D., Marques, D., Rocha, S., Francisco, H., Santos, C., Mesquita, M. F., & Singh, J. (2004). Effects of diabetes mellitus on salivary secretion and its composition in the human. Molecular and Cellular Biochemistry, 261(1-2), 137–142.

    Article  CAS  PubMed  Google Scholar 

  45. Benguigui, C., Bongard, V., Ruidavets, J. B., Chamontin, B., Sixou, M., Ferrières, J., & Amar, J. (2010). Metabolic syndrome, insulin resistance, and periodontitis: a cross-sectional study in a middle-aged French population. Journal of Clinical Periodontology, 37(7), 601–608.

    Article  PubMed  Google Scholar 

  46. Timonen, P., Suominen-Taipale, L., Jula, A., Niskanen, M., Knuuttila, M., & Ylöstalo, P. (2011). Insulin sensitivity and periodontal infection in a non-diabetic, non-smoking adult population. Journal of Clinical Periodontology, 38(1), 17–24.

    Article  PubMed  Google Scholar 

  47. Tanakchi S., Aly F. Z. Anatomy & histology. PathologyOutlines.com, website. https://www.pathologyoutlines.com/topic/salivaryglandsnormalhistology.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Guaraci DeVito-Moraes.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeVito-Moraes, A.G., Marques, V.D.D., Caperuto, L.C. et al. INitial Steps of Insulin Action in Parotid Glands of Male Wistar Rats. Cell Biochem Biophys 80, 89–95 (2022). https://doi.org/10.1007/s12013-021-01025-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01025-5

Keywords

Navigation